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Abstract

Cooperative learning and inference in multi-agent systems (MAS) are increasingly
pivotal in addressing the complexities and dynamic demands of modern technolog-
ical environments. Spanning domains from robotics and internet of things (IoT) to
telecommunications and healthcare, these collaborative strategies enhance the robust-
ness and adaptability of systems handling intricate or resource-intensive tasks. This
thesis explores innovative approaches in both centralized and decentralized frameworks,
focusing on optimizing system performance through advanced machine learning (ML)
methods. The goal is to introduce novel methods that expand the capabilities of MAS in
practical scenarios, ensuring efficient, scalable, and privacy-aware solutions that adapt
dynamically to changing conditions and maintain high performance among varied and
unpredictable environmental factors.

The thesis is divided into two main parts, each dedicated to analyzing one of the
two key components of a MAS: learning and inference. In the first part of the thesis,
the focus is on cooperative learning which is investigated in graph-aware centralized
machine learning (C-ML), privacy-preserving decentralized machine learning (D-ML),
and non-stationary learning frameworks. For graph-aware learning, we considered the
tasks of data association (DA) and cooperative positioning (CP) in vehicular networks,
where exploiting a logical graph structure enables the handling of non-linear distribu-
tions and scalable architectures. When data exchanged between agents is private or
sensitive, D-ML algorithms can be used to exchange only model parameters or latent
features, reducing the disclosure of privacy information. In this context, we proposed a
real platform for performing decentralized and fully-decentralized learning in medical
and IoT networks. In particular, we studied federated learning (FL) algorithms in asyn-
chronous learning processes and FL weighted averaged consensus (WAC) techniques for
serverless learning in non-independent and identically distributed (IID) conditions with
heterogeneous devices. In the presence of resource-constrained devices, we proposed
decentralized split learning (SL) algorithms that iteratively distribute the computational
burden of training among agents. Finally, whenever agents are in the presence of
highly-dynamic environments and non-stationary distributions of data, multi-agent rein-
forcement learning (MARL) algorithms can be adopted. In the thesis, we developed a
novel MARL algorithm for performing implicit cooperative positioning (ICP) in vehicu-
lar networks, where passive objects (or targets) are exploited to refine the agents’ state
estimate.

After having investigated techniques for cooperative learning, in the second part of
the thesis, we turned our attention to cooperative inference, where we studied efficient
and reliable techniques for the tasks of non-line-of-sight (NLoS) identification, static
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and mobile position in next-generation cellular networks. The agents, i.e., the base
stations (BSs) in this case, estimate and compress the channel into a latent representation
which is subsequently adopted for sensing. For NLoS identification, we proposed an
anomaly detection scheme which efficiently evaluates the likelihood of channel samples
of belonging to the line-of-sight (LoS) normal distribution. On the contrary, for static
positioning, we presented a cooperative inference scheme for efficiently combining
latent features. In particular, in LoS conditions, the BSs cooperatively localize the
user equipment (UE) by fusing latent features, whereas in NLoS conditions, the BSs
perform independently positioning. Finally, for mobile positioning, we first proposed
a novel Bayesian neural network (BNN) algorithm for estimating the full uncertainty
of predictions in real-time. Then, we integrated this uncertainty into tracking filters,
optimally combining the fingerprint-based likelihood functions of different BSs in out
of distribution (OoD) areas.

In conclusion, this thesis presents a comprehensive exploration of cooperative learn-
ing and inference strategies within MASs, offering scalable and adaptive solutions across
a diverse range of technological domains. By integrating advanced ML techniques with
the implicit complexities of cooperative environments, we have developed robust models
that significantly enhance both the precision and reliability of various application areas,
ranging from vehicular and IoT networking to healthcare and cellular systems. These in-
novative approaches not only demonstrate the practical benefits of cooperative strategies
but also highlight the potential for future advancements in data-driven technologies.
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Notation

Random variables are displayed in sans serif, upright type; their actual values in serif,
italic type. Matrices and vectors are represented by bold uppercase and lowercase letters,
respectively. For instance, a random variable and its realization are indicated by y and y;
a random vector and its realization by y and y; a random matrix and its realization by Y
and Y , respectively. Random sets and their realizations are represented by upright sans
serif and calligraphic fonts, respectively. For example, a random set and its realization
are represented by Y and Y , respectively. Random sets and their realizations are denoted
by up-right sans serif and calligraphic font, respectively. For example, a random set
and its realization are denoted by Y and Y , respectively. The function py(y), and simply
p(y) when there is no ambiguity, denotes the probability density function (PDF) of
y. The likelihood function, parameterized by the parameter θ, is denoted as py|θ(y|θ)
or pθ(y). The notation YH, Y∗, and Y⊤ indicate the matrix conjugate transposition,
conjugation, and transposition. Tr(·) and det(·) denote the trace and the determinant of
the matrix argument, respectively. The Kronecker and the Hadamard products between
two matrices are denoted with the symbols ⊗ and ⊙, respectively. The inner product
between two vectors y and x is represented as ⟨y,x⟩. The Cartesian product between
two sets Y andX is denoted asZ = Y×X . With the notation y ∼ N (µ, σ2) we indicate
a Gaussian random variable y with mean µ and standard deviation σ, whose PDF is
denoted by N (x; µ, σ2). With the notation y ∼ U(a, b) we indicate a Uniform random

variable y with support [a, b]. We use V{y} = Vy∼p(y)

{
y
}

and E{y} = Ey∼p(y)

{
y
}

to

denote the variance and the expectation of random variable, respectively. C and R stand
for the set of complex and real numbers, respectively. Im(y) and Re(y) are the complex
and real part of the complex number y, respectively. j =

√
−1 denotes the imaginary

unit. ⌊x⌋ indicates the largest integer not greater than y, |y| and |Y| denote the length
of the vector y and size of the set Y , respectively, while δ[·] and δ(·) are the Kronecker
and Dirac delta functions, respectively. Finally, ∥y∥2 and ∥y∥1 represent the L2 and L1
norms of vector y, respectively.
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Introduction

This chapter presents the thesis work and its structure. Sec. 1.1 introduces the main
motivations behind the thesis research on cooperative machine learning (ML) methods
for distributed systems. Sec. 1.2 highlights the current state-of-the-art on coopera-
tive learning and inference, with main applications on vehicular, medical, internet of
things (IoT) and next-generation cellular networks. Finally, Sec. 1.3 reports the main
contributions and achievements of the thesis, whereas Sec. 1.4 describes the structure of
the thesis and the publications written during the Ph.D. research.

3



Chapter 1. Introduction

1.1 Motivations

COOPERATION between agents, particularly in dynamic and complex environments,
is fundamental to achieving effective and efficient task execution [1]. The necessity

of such collaboration is pronounced in scenarios where tasks are too complicated or
resource-intensive for individual agents to handle alone [2]. Multi-agent systems (MAS)
span various domains from medical fields [3] and IoT [4] to cooperative intelligent
transportation systems (C-ITS) [5] and next-generation cellular networks [6] (see Fig.
1.1). According to the specific application domain, the focus can shift from learning the
most accurate and/or reliable model to efficiently predicting the model outcome. For
example, in a medical network, the focus is on learning the most accurate and reliable
models for tasks like diagnosis, ensuring data privacy, and compliance with regulations.
Whereas in vehicular networks, the emphasis is on efficiently predicting the model
outcome in real-time for applications such as cooperative positioning (CP). Thus, we
can distinguish between cooperative learning and inference based on their distinct roles
and methodologies, each tailored to optimize different aspects of MAS.

Regarding cooperative learning, two distinct methodologies emerge: centralized
machine learning (C-ML) and decentralized machine learning (D-ML) approaches.
C-ML involves a central node, usually known as parameter server (PS), that processes
data collected from various agents to build a comprehensive global model. C-ML is
often applied in contexts where performances are favored with respect to scalability and
where the exchange of data within the network does not imply privacy issues. Moreover,
it is also suitable when the nodes are not mobile devices, as continuous and intensive
data exchange could be too demanding in such cases. According to the specific task, we
may model the problem as a learning process over a graph. Indeed, learning directly
on graphs is a particularly effective mechanism to exploit the knowledge of the graph
structure to push the limits of the performances [7]. Vehicular networks represent an
area where cooperative learning is pivotal [8]. Here, vehicles communicate and learn
from each other to improve navigation, safety, and traffic management. By sharing
information such as motion dynamics, detections, and road conditions, vehicles create a
dynamic, adaptive network that enhances travel efficiency and safety for all vulnerable
road user (VRU). This C-ML approach is particularly effective in vehicular networks
because of the roadside infrastructure that can act as an aggregator and perform edge
processing, enabling real-time data collection and model updates with low latency. The
main challenges include performing accurate data association (DA) between inter-agent,
i.e., vehicle, measurements [9], aided for subsequent sensing applications such as CP
and multiple object tracking (MOT) [10].

On the other hand, D-ML, often applied in medical networks, employs individual
devices to learn and make decisions independently, thereby improving scalability while
preserving the privacy and security of locally stored data [11]. Indeed, in the medical
context, the new regulations on data protection, such as the General Data Protection Reg-
ulation (GDPR) [12], impose strict requirements on how data is processed and shared,
compelling the adoption of decentralized models that ensure data privacy and security.
D-ML are also adopted in IoT networks [13], where additional requirements include
energy efficiency [14], fast convergence [15], and attack resilience [16]. Whenever
heterogeneous agents with different temporal alignments or computation capabilities are



Chapter 1. Introduction

Parameter
Server

Network 

2
Core

4
Core

8
Core

IoT devices/learners

Network 
broker

(a) Medical Networks (b) Vehicular Networks

(c) IoT Networks (d) Next-generation Cellular Networks

Figure 1.1: Application domain of MAS.

present, asynchronous orchestration of the learning process must be taken into account
[17]. Moreover, when dealing with non-independent and identically distributed (IID)
data distribution among agents, convergence may be difficult to achieve, especially with
skewed data in the feature or sample domain. In order to handle resilience, e.g., node fail-
ures, and even more scalability, fully decentralized machine learning (FD-ML) methods
need to be employed, where agents collaboratively train models while also reaching a
consensus without a central coordinating entity [18]. Finally, the last challenges include
non-stationarity of both the learning graph and data distributions [19, 20]. Here, the
models must be robust and adaptive, capable of evolving as the underlying data and
network dynamics change.

Turning to cooperative inference, the focus becomes the application of these coopera-
tively learned models to make predictions or decisions. Here the objective is not only to
exploit cooperation (e.g., data exchange in C-ML or parameters/latent features in D-ML
settings), but also to improve efficiency and reliability, especially in mission-critical
applications. One example is in advanced sensing applications within next-generation
cellular networks, e.g., fifth generation (5G) and sixth generation (6G) [21, 22], where
strict requirements on positioning accuracy, latency and reliability represent huge chal-
lenges [23, 24]. In cellular vehicle-to-everything (C-V2X) enhanced services, such
as cooperative adaptive cruise control and cooperative emergency maneuvers of con-
nected automated vehicles (CAVs), the requirements on the positioning accuracy and
latency can be as low as 20 cm and 10 ms, respectively [25, 26]. Regarding reliability,
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stringent guidelines encompass not only packet drop probability, e.g., up to 99.999%
for the ultra-reliable low-latency communications (URLLC) use-cases [27], but also
trustworthiness of measurements and positioning predictions [28]. It is clear that, despite
the technological enablers such as high carrier frequencies, bandwidths and massive
multiple-input multiple-output (mMIMO) systems [29], conventional non-ML-based
models fail in fulfilling the above requirements, especially against high blockage sit-
uations and complex real world noise distributions [30–32]. Indeed, 3rd Generation
Partnership Project (3GPP) specifications already foresee ML/artificial intelligence (AI)
for assisted or even direct positioning in the latest 5G-Advanced Release 18 [33].

Examples of relevant tasks that cooperative inference enables in cellular systems for
sensing applications are cooperative non-line-of-sight (NLoS) identification, positioning,
and tracking. The first step for assisting positioning is understanding whether the radio
signals come from line-of-sight (LoS) or NLoS conditions, to mainly determine the
un/reliability of those observations. Here the main challenge is to create a precise and
compressed LoS/NLoS distribution representation to efficiently perform sampling and
establish the likelihood of being in one of the two conditions. On the other hand, CP
focuses on peak performances on the estimated position by optimally combining the
output of other agents, i.e., base stations (BSs) in this case. The difficulties comprise
the choice of the information type to be exchanged between agents and how effec-
tively combining those information. Finally, in cooperative tracking, the objectives are
achieving low latency, in order to track a fast moving object, and producing a reliability
measure of the models’ output. Indeed, frequentist-based ML algorithms do not provide
a reliable uncertainty quantification of the prediction and tend to overfit in low-density
training regions. Here, the main challenge is to discern between the uncertainty due to
the intrinsic noise in the data, i.e., aleatoric uncertainty, and the uncertainty due to the
variability on the estimated model parameters, also known as epistemic uncertainty [34].
Bayesian neural networks (BNNs) offer a partial solution to these issues [35], whereas a
real-time, uncertainty-aware, and efficient framework is still an open research direction.

Driven by the increased demand for real-world cooperative applications, this thesis
aims at proposing novel solutions to the main open problems in cooperative learning
and inference at enhancing robustness and adaptability under dynamic conditions. This
involves the development of new methodologies that allow cooperative systems to
maintain high performance even when facing unpredictable environmental changes or
when operating with incomplete or imperfect information. A representative image of
these two cooperative steps can be found in Fig. 1.2 and 1.3. In the former, agents
exploit cooperation to build a more accurate model. Each cluster of agents may have
different characteristics, e.g., computational capabilities, graph awareness, and data
types. On the other hand, in the latter, agents (BSs or CAVs in this case) adapt their
predictions according to the world interactions and neighbors’ presence. In particular,
agents predict efficient real-time function representation, e.g., model outputs, which
are exchanged and fused into the network to enhance the coherence and accuracy of
collective predictions.
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Figure 1.2: Cooperative learning in MAS.

1.2 State of the Art
In this chapter, we provide a comprehensive overview of current advancements in coop-
erative learning and inference methods. We will mainly focus on specific applications to
give tangible examples of where these algorithms can be applied in real-world scenarios.

1.2.1 Graph-aware Centralized Learning
Exploiting the graph knowledge to perform a specific task is a common technique in
standard signal processing methods. An example is the sum-product algorithm (SPA) (or
message passing algorithm (MPA)), which is based on factor graphs (FGs), a graphical-
based intuitive way to visually simplify the factorization of probability density function
(PDF), where nodes represent variables and factors, and bidirectional links embody the
dependencies [36]. MPAs leverage these graphs for iterative message passing, enhancing
cooperative tasks across diverse applications such as CAVs. Historically, MPAs have
been instrumental in enabling sensor data fusion across vehicular networks in C-ITS.
By integrating data from various sensors distributed across vehicles and infrastructural
elements, MPAs facilitate advanced CP and MOT use-cases [37, 38]. These applications
benefit significantly from the distributed or single-unit sensor data [39, 40], aggregated
via vehicle-to-everything (V2X) communication links and correctly associated by means
of DA algorithms [41, 42]. However, despite their scalability, SPA are optimal only
for linear and Gaussian models and become approximations in scenarios involving
non-linear distributions or graph loops [42, 43], mostly presented in real-world systems.

In contrast, ML models, particularly deep neural networks (DNNs) embedded within
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graphs as graph neural networks (GNNs) [44], offer a robust alternative by directly
learning from data generated at each vehicle. GNNs, and especially message passing
neural networks (MPNNs), inherit SPA’s message-passing framework but enhance it
by addressing errors due to cycles and mismatches in model assumptions. Indeed, the
integration of MPNNs and SPA have been used in the past for correcting cycle errors and
mismatches in the model [45, 46], offering improved performances in the overall system.
Although MPNNs maintain a scalable architecture with fewer parameters than typical
DNNs [47], they effectively capture both linear and non-linear relationships, providing
a powerful tool for processing loopy graphs when sufficient training data is available.
This integration ensures that MPNNs can outperform traditional MPAs in managing
non-linear distributions and complex network topologies frequently encountered in
vehicular and infrastructural networks [48].

1.2.2 Privacy-preserving Decentralized Learning
Whenever privacy requirements have to be fulfilled on the data, D-ML algorithms may
be adopted to ensure secure and confidential handling of the data. These algorithms
exchange the model parameters and/or intermediate layers’ outputs that should not
disclose the private information within the nodes.

First, D-ML methods were developed within the federated learning (FL) framework.
In vanilla federated averaging (FedAvg) algorithm [49], a central entity, i.e., PS, coordi-
nates the learning process among the participating agents, or clients, by aggregating their
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locally computed model updates. While FL offers undoubted advantages, it also faces
multiple challenges that need to be tackled to guarantee robustness and efficiency. One of
the key difficulties is handling heterogeneous agents with different temporal alignments
and possible disconnections during local training. Indeed, vanilla FL algorithms are
synchronous, meaning that the PS has to pause for the selected agents to terminate their
local training to update the global model. To address this problem, asynchronous FL
algorithms have been investigated in the literature, where the global model is updated
independently of the agents’ local updates completion. However, current state-of-the-art
asynchronous FL methods exhibit several key limitations. Firstly, in standard strategies,
the PS updates the global model immediately upon receiving a local model [50], disre-
garding agent-specific resource constraints. This can result in biased updates from faster
agents. Secondly, since the number of local epochs is typically pre-specified, the agents’
learning process is not optimized or adjusted based on the quality and quantity of data
or the typology of traffic [17].

Other major limitations of conventional FL are the handling of non-IID data among
agents and the reliance on the PS for model aggregation. For handling non-IID data,
federated proximal (FedProx) algorithm [51], and its variants [15], adopt an inexact
proximal point update for local optimization by penalizing the divergence of the local
parameters from the PS global ones. While FedProx is implemented independently
by each client, other algorithms have aimed at developing specialized PS aggregation
weighting to manage the influence of each local model in the global update. For example,
the federated adaptive weighting (FedAdp) algorithm proposed in [52] employs PS
aggregation weights based on the inner product between the global and local gradients.
This metric can act as a dis/similarity measure to gauge the contribution of the local
model. Intuitively, the more orthogonal the local and global gradients, the less the local
model will positively affect the global aggregation.

To tackle the challenges linked with PS-based FL and other centralized approaches,
a distributed version of FL, known as consensus-based FL or consensus-driven Fe-
dAvg (CFA) [18, 53], has been recently introduced. Consensus-FL enables agents to
collaboratively train models and reach consensus on model updates without a central
coordinating entity, resulting in more efficient and scalable learning. These methods
have evolved from traditional distributed maximum likelihood estimation based on
consensus [54], where individual nodes exclusively depend on their own local data and
the data exchanged with adjacent nodes to refine their local estimates. In its simplest
form, consensus, such as averaged consensus (AC) [55], involves synchronized model
parameter updates with constant or no weighting aggregation. Similar to AC, consensus-
FL encounters challenges due to non-IID datasets and related convergence [56, 57].
While both non-IIDness and decentralization have been intensively investigated, the
literature still lacks of approaches that address both the issues.

An alternative to FL that still meets privacy demands is split learning (SL) [58], a
method within D-ML tailored for resource-limited settings such as IoT environments. In
SL, the model training is distributed between the agents and a PS, where each party has
access only to certain parts of the model [59]. This partitioning improves the privacy of
both the model and the data, and enhances training speed and communication efficiency
relative to FL [60]. The neural network (NN) undergoing training is segmented into
two sub-networks at a particular layer, namely the split or cut layer. The upper layers
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are managed by the agents, while the lower layers are controlled by the PS. During the
training phase, agents perform forward propagation and transmit the intermediate outputs,
known as smashed data, to the PS. The PS calculates the final output and performs
back-propagation, sending the gradients of the split layer back to the agents. Despite the
advantages, SL presents two main drawbacks, related to the lack of parallelization and
to the presence of the PS.

Specifically, in SL, agent interaction with the PS occurs sequentially, which keeps
other agents’ resources idle during the training sequence. This sequential process in-
creases both the training overhead and latency, particularly when the learning involves
many devices. To address this, researchers have suggested varying the training sequence
and modifying the data sizes within the nodes [61]. A significant advancement in
achieving full parallelism has been realized with the introduction of the split federated
learning (SFL) framework [62, 63]. SFL fuses the principal advantage of FL-parallel
processing across decentralized agents with the key benefit of SL, which involves divid-
ing the network into server-side and client-side components throughout training. Unlike
SL, SFL enables all agents to process data simultaneously, interacting concurrently with
both a split PS and a federated PS. This allows for enhanced computational efficiency
and reduced latency compared to traditional SL. On the contrary, the centralization issue
related to the presence of the PS is still an open problem in the literature, with ongoing
research efforts aimed at finding viable solutions.

1.2.3 Non-stationary Cooperative Learning
In conditions where labeled data are expensive or scarce, or when the environment is
subject to dynamic changes, traditional ML techniques often fail to adapt and perform
effectively. Under such conditions, the reinforcement learning (RL) approach [64] and
its deep learning (DL)-enhanced variants [65–67] have demonstrated remarkable capa-
bilities in managing challenging single-agent Markov decision process (MDP). Here,
the agent’s actions are guided on achieving long-term goals, or rewards, and have direct
consequences on the world state [68, 69]. In scenarios involving multiple agents within
environments where the state is not directly observable, we employ a decentralized-
partially observable Markov decision process (Dec-POMDP) modelization [70–73] that
is addressed with multi-agent reinforcement learning (MARL) [74] algorithms. MARL
involves autonomous agents whose actions mutually affect their perception of the envi-
ronment, and it is typically managed by employing recurrent neural networks (RNNs)
that exploit histories of observations and actions. MARL and its DL-related method-
ologies are particularly well-suited for cooperative sensing tasks, such as CP and MOT,
as they are effective in complex decision-making scenarios where autonomous agents
collaborate towards a shared goal (i.e., reward) and base their decisions on incomplete
or uncertain information about the system’s state [75]. Effectively, MARL extends the
concept of Bayesian filtering, where agents not only predict the state through belief
calculations but also make strategic decisions aimed at maximizing long-term rewards,
guided by a policy that transitions from state to action.

In the context of MARL applied to CP, most research has concentrated on the usage
of intelligent unmanned aerial vehicles (UAVs) for target tracking [76] and on agent
scheduling to enhance CP [77]. The study in [76] aimed at steering the agents to track
passive objects, assuming the agents’ state is known. However, they discarded the



Chapter 1. Introduction

primary challenge of simultaneously estimating the agents’ states and sensing targets
from the measurements. The research in [77] utilized conventional MPA for state esti-
mation, with the goal of activating links between agents to boost cooperative positioning
performance (i.e., enhancing the position error bound (PEB)). The limitations here
include using RL merely to assist MPA rather than for direct positioning, and modeling
links as isolated agents instead of fully utilizing the capabilities of MAS. In contrast,
MARL strategies focused on communications typically overlook the aspect of state
estimation [78] and prioritize not the efficiency of communication but rather the optimal
integration of information received from neighboring agents [79]. Given this overview,
the pressing unresolved issue is the development of a decentralized MARL algorithm
that can concurrently handle both the computation of agent state beliefs and the man-
agement of agent-to-agent communication resources, aiming to optimize both location
accuracy and communication efficiency.

1.2.4 Sensing in Cellular Networks by Cooperative Inference
A major field of application for cooperative inference is sensing in next-generation
cellular networks, where NLoS identification is required for enhancing the reliability of
positioning. By accurately determining whether a signal is obstructed (i.e., in a NLoS
condition), the system can adjust its algorithms to compensate for signal degradation or
latency issues. Subsequently, cooperation is exploited to augment single-BS position-
ing by coherently combining latent representations of observations among BSs. This
cooperation allows for improved accuracy, robustness, and continuity in location-based
services, even in dense urban environments where NLoS conditions frequently occur.
Finally, cooperative tracking is crucial for mobile positioning, where the fusion of data
from multiple sources (e.g., BSs, user equipment (UE), and CAVs) provides a more
comprehensive and dynamic understanding of an object’s trajectory, compensating for
signal loss or errors encountered by individual nodes.

Therefore, in the following, we describe the current state-of-the-art of cooperative
inference techniques for sensing applications in next-generation cellular networks. The
learning is mainly performed in a centralized manner, i.e., C-ML, where data is shared
among nodes to build a unique ML model. Extension to D-ML can be obtained by
applying decentralized learning techniques such as FL or SL. Since it is not the pri-
mary emphasis of this chapter, we focus on exploring techniques that achieve optimal
performance without compromising on efficiency and latency.

1.2.4.1 Machine Learning for NLoS Identification

The usage of ML for NLoS identification has gained significant attention due to its ability
to bypass the need for complex statistical models, which are often required to determine
the combined probability distributions of key features in traditional methods. ML-based
approaches overcome these limitations by automatically learning the underlying patterns
without statistical modeling of input characteristics. Initial studies on ML for NLoS
identification adopted manually-selected channel state information (CSI) features, such
as maximum amplitude, kurtosis, and energy [80–82], in combination with non-deep
ML models, comprising random forests (RFs), Gaussian process (GP), and support
vector machines (SVMs) [83, 84]. Despite being simple and efficient, these methods
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heavily rely on predefined features, which may limit their performance. With the advent
of 5G, comprising higher spatial and temporal resolutions, recent studies have leveraged
the combination of the full raw channel impulse response (CIR) and the convolutional
neural network (CNN)’s automatic feature extraction capabilities for highly non-linear
feature extraction and compression [85, 86]. In particular, the compression is achieved by
means of a autoencoder (AE) structure, which tries to reconstruct the input CIR data in
a lower-dimensional form while preserving essential information for classification tasks.
Subsequently, the compressed channel representation, also known as latent features,
can be leveraged to effectively decrease the processing demands of prediction models.
However, when dealing with supervised ML techniques, where both LoS/NLoS labels
are provided for training, significant challenges still remain regarding the extensive data
measurement and labor-intensive labeling required. Moreover, supervised methods need
frequent updates to their training datasets to reflect changing conditions and adequately
represent all potential NLoS anomalies.

To overcome these challenges, semi-supervised methods, such as anomaly detection
techniques, may be employed. These methods often involve learning a single distribution,
requiring fewer examples of anomalies compared to fully supervised learning, and
having better performances with respect to unsupervised approaches [87]. Works in
this direction may be found in [88], where authors exploited variational autoencoder
(VAE) to induce the distribution of latent features towards a Gaussian PDF for easier
representation and computation. Higher performances can also be achieved by adopting
a two-step training AE-kernel density estimation (KDE), where the KDE is employed for
obtaining the anomaly scoring from the latent features [89, 90]. This method, however,
requires retaining the entire dataset for inference, which may be infeasible for storing
requirements. Although the usage of VAEs and AE-KDE can yield excellent results,
they still require a sampling-based mechanism for performing prediction, making them
less suited for real-time applications. To overcome this, one study proposed a deep
autoencoding Gaussian mixture model (DAGMM) that simultaneously learns the latent
features and their densities within a Gaussian mixture model (GMM) framework [91].
While this method avoids the complexities of two-step training, GMMs are often prone
to singularities and may not completely represent the latent distribution of normal
samples. To conclude, in the literature there is a lack of real-time methodologies that
can efficiently represent distributions of latent features and perform predictions without
sampling or storing training datasets.

1.2.4.2 Machine Learning for Static Positioning

The vast majority of works on ML for static positioning are based on fingerprinting
methodologies, since they permit to map complex high-blockage environments to their
related position. Initial studies employed received signal strength (RSS) fingerprinting
to perform positioning with Wi-Fi technology [92, 93]. Following the introduction of
multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing
(OFDM) technologies in the IEEE 802.11a/n protocol, which facilitated the extraction
of CSI from commercial Wi-Fi equipment, there has been a rise in studies focused on
wireless positioning and target tracking through CSI. The availability of the channel
information across multiple antennas and frequencies permits the learning of not just
the user’s position [94–96], but also the environmental dynamics influencing such
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propagation [97]. DL methods have been applied to directly learn optimal nonlinear
feature combinations to generate outputs for NLoS classification and position estimation.
Relevant studies include [98, 99], where CNN was utilized for feature extraction.

The use of complete CIR data, particularly when formatted into image-like structures,
has recently been recognized as a promising technique. Researchers in [100] used both
geographic data and the CIR knowledge (i.e., phase, power gain, angle of departure
(AoD), angle of arrival (AoA), and time of flight (ToF)) to estimate UE locations in 5G
cellular systems. However, they presumed perfect knowledge of CIR via ray-tracing,
which is challenging under real-world conditions. Another study [101] employed
the channel frequency response (CFR) matrix, calculated through practical channel
estimation and enhanced with additive noise during training. While successful, the
CFR matrix does not explicitly represent the ToF or AoA for each path, potentially
complicating feature extraction. A novel approach [102] involved a 3D CNN with multi-
scale convolutional layers to infer the location directly using an angle-delay channel
power matrix (ADCPM). Yet, this method depends heavily on fingerprint sampling
distance and fails to differentiate between NLoS and LoS states, addressing each position
uniformly without distinguishing among geometric features, that are advantageous in
LoS scenarios, and those dependent solely on NLoS fingerprints. Moreover, while
existing approaches focus on single-BS positioning based on aggregated data, there is a
lack of literature on DL-based location prediction that incorporates measurements from
different antenna panels at the inference step through BSs’ cooperation.

1.2.4.3 Machine Learning for Mobile Positioning

The task of UE tracking via ML techniques within 5G environments is still poorly
investigated, with most prior works opting for traditional Bayesian methods like extended
Kalman filter (EKF) [103] or MPA [104], augmented by millimeter waves (mmWave)
and MIMO technologies. The study in [105] explored the use of cutting-edge temporal
convolutional network (TCN) models for NLoS outdoor tracking, achieving a mean
absolute error (MAE) of 1.8 meters. In parallel, studies within indoor settings [106]
applied long short-term memory (LSTM) and CNN to raw CSI data. However, both
LSTMs and TCNs encounter two primary limitations. Firstly, they necessitate training
datasets comprising highly accurate ground truth trajectories. Although feasible for
static scenarios, acquiring such precise ground truth for dynamic positioning, particularly
outdoors, proves challenging without sophisticated optical laser positioning systems.
Secondly, traditional LSTMs and TCNs do not provide predictions with uncertainty
metrics, which restricts their application in environments where safety is paramount.

BNNs can provide a solution to these issues, while maintaining the advantages of
conventional NN in providing NLoS position estimates. Indeed, BNNs are able to
differentiate and fully evaluate the uncertainties that characterize the predictions, i.e.,
the aleatoric and epistemic uncertainties [107]. Identifying these uncertainties is critical
as it clarifies the motivations behind the model’s prediction uncertainty, i.e., whether it is
due to insufficient training data or intrinsic data variability. Furthermore, understanding
these uncertainties can pinpoint where more training data would be most advantageous
(i.e., areas with high epistemic uncertainty but low aleatoric uncertainty). However,
in the literature of BNNs for positioning, BNNs have been merely used for providing
static point estimates with uncertainty [108] or for enhancing mean performances
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of flight trajectory predictions [109, 110], without actively exploiting their predicted
uncertainty within the tracking solution. Moreover, these approaches require sampling
procedures and are not suitable for real-time applications. To this aim, many works tried
to tackle the problem of BNN real-time uncertainty prediction. A potential resolution
to these challenges involves the implementation of teacher-student methodologies,
like Bayesian dark knowledge (BDK) [111], where a non-Bayesian student NN is
taught to emulate a Bayesian teacher BNN, thereby learning both point estimates
and associated uncertainties. During deployment, the student NN manages real-time
uncertainty assessments without the need for labor-intensive sampling techniques. Yet,
a significant obstacle with teacher-student models is the student’s inability to discern
among the various types of uncertainties in its outputs. Currently, no real-time methods
that effectively learn both aleatoric and epistemic uncertainties are available, especially
for safety-critical tasks like autonomous driving.

1.3 Contributions and Objectives
The objective of the thesis is to design innovative solutions that enable efficient and
reliable inference in networks of interconnected agents, where each agent must collab-
oratively learn a shared model from distributed data. These solutions aim to address
key challenges in the current open problems of the state-of-the-art in the domain of
cooperative MAS.

The cooperation is first exploited for building models that leverage the vast data
produced at the edge, and then adopted in improving the efficiency, latency, and reliability
of inference procedures. The open problems are investigated in key application areas
to prove the concrete effectiveness of the developed solutions and algorithms. We
studied cooperative learning methodologies mainly in vehicular networks (for DA and
CP tasks), medical networks (for brain tumor segmentation tasks), and IoT networks (for
resource-constraint tasks). On the contrary, cooperative inference has been optimized
in next-generation cellular networks (for NLoS identification, static positioning, and
mobile positioning tasks).

Specifically, the key contributions of this thesis are outlined as follows:

• In vehicular networks, we tackled the issues of MPA in DA and CP tasks by designing
data-drived methods, i.e., MPNN, that exploit the knowledge of the network graph. In
Papers [C1] and [J2], we introduced MPNN models for the cooperative association of
3D bounding boxes from lidar sensing in CAVs, evaluating their performance against
the standard sum-product algorithm for data association (SPADA) [43]. Conversely,
in Paper [J3], we present a combined architecture that integrates a MPNN with a
LSTM. This model is designed to learn the motion patterns of agents over time and
iteratively refine their position estimates using a message-passing procedure.

• The D-ML and FD-ML methods have been first analyzed in Paper [J4] by developing a
custom FL system built on the message queuing telemetry transport (MQTT) protocol
that permitted the real-world validation of algorithms for brain tumor segmentation
in physical separated medical nodes. With the developed FL platform, in Paper [J5],
we tackled the main issue of training synchronization procedures by proposing a
PS-policy for the orchestration of agents’ updates in heterogeneous IoT settings. We
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then moved, in Paper [J6], to analyze fully-decentralized FL by proposing weighted
averaged consensus (WAC) techniques, namely consensus-driven FedAdp (CFAdp),
for the improving performances and convergence of consensus-schemes under non-
IID data distributions. Finally, in Paper [J7], we proposed the decentralized version of
SFL algorithms, namely split consensus federated learning (SCFL), which permits the
distributed learning and inference in resource-constraint IoT networks where agents
improve the performances by exchanging smashed data without the PS coordination.

• Under non-stationary vehicular networks, in Papers [C8] and [J9], we propose a
new MARL algorithm, namely implicit cooperative positioning (ICP)-multi-agent
proximal policy optimization (MAPPO), for performing CP by exploiting detected
passive objects among agents as common reference positioning points. We adopted
a novel centralized-training and dynamic-decentralized-execution scheme, which
permits the agents to automatically learn the state world representation by means
of belief estimation. At the same time, the agents learn an optimal policy to dy-
namically de/activate the radio links with the neighbors to optimize communication
efficiency. We proved the superior performances of the method against state-of-the-art
Bayesian filtering approaches, such as ICP, concerning both positioning errors and
communication overhead.

• Driven by the lack of real-time methodologies for efficiently representing compressed
distributions of latent variables, in Paper [J10], we proposed a NLoS identification
method for next-generation cellular networks that automatically learn the LoS latent
distributions of ADCPM samples. In particular, we presented an anomaly-detection
scheme, namely deep autoencoding kernel density model (DAKDM), that is able to
learn the KDE likelihood of normal, i.e., LoS samples, in a single-stage training, and
without requiring a sampling procedure or storing the entire dataset for inference.

• In the context of efficient latent-feature combinations for CP tasks, in Paper [J11], we
introduced a DL model designed for network-based localization, which dynamically
alternated between cooperative-positioning in LoS environments and ego-positioning
in NLoS conditions. It enhanced the location accuracy of CAVs in urban settings by
exploiting predictions from nearby BSs. We formulated both NLoS identification
and position estimation as a combined task, creating a unique loss function that
simultaneously maximized the log-likelihood of the joint task and learned a concise
representation of the channel.

• Finally, for performing cooperative tracking in next-generation cellular networks,
in Papers [C12] and [J13], we designed of a novel teacher-student BNN method,
namely Bayesian bright knowledge (BBK), capable of predicting both epistemic
and aleatoric uncertainties without requiring a sampling procedure during inference,
enabling it to be well-suited for real-time and safety-critical environments. We then
developed a unique integration of BNNs into cellular systems with cooperative BSs
to track moving targets, ensuring ease of implementation and general compatibility
with any BNN method. The proposed methodology and tracking procedure highly im-
proved performances and reliability, especially in out of distribution (OoD) scenarios,
compared to traditional tracking systems and frequentist DL models.
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Figure 1.4: Mind map visualizing the contributions of the PhD thesis: cooperative learning (left nodes)
and cooperative inference (right nodes).

1.4 Outline and Related Publications
The thesis is divided into three main parts. Part I which describe the main methodologies
needed for the comprehension of the related publications. Part II which includes the
papers centered around the cooperative learning task, mainly divided into MPNN under
the C-ML paradigm, FL and SL under the stationary D-ML and FD-ML paradigms,
and MARL under the non-stationary centralized-training and dynamic-decentralized-
execution paradigm. Part III which includes the papers focused on the cooperative
inference task, mainly partitioned into efficient anomaly detection techniques for NLoS
identification, effective latent feature combination methods for static positioning, and
novel real-time BNN methodologies for mobile positioning. For a concise summary of
the publications included in the thesis, we refer to Fig. 1.4.

In particular, the reminder of the Part I is as follows:

• Chapter 2: Illustrates the main methodologies for cooperative learning in MAS,
introducing the background and explaining the techniques adopted in the thesis.
Moreover, we present discussions on the specific contributions and the references to
the papers in the related sections.

• Chapter 3: Presents the main system model, DL model input, and architecture
adopted for efficient inference in next-generation cellular networks. Moreover, we
discuss key methodologies adopted in the papers, such as the variational inference (VI)
approach.

Part II is organized as follows:

• Chapter 4: Includes the Papers [C1], [J2] and [J3]. This chapter mainly deals
with graph-based C-ML solutions for DA and CP tasks in vehicular networks. The
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proposed solutions are then compared with their corresponding Bayesian-filtering
methodologies under different noise statistics and/or complex graph structures.

[C1] B. Camajori Tedeschini, M. Brambilla, L. Barbieri, and M. Nicoli, “Address-
ing data association by message passing over graph neural networks,” in 2022 25th
Int. Conf. Inf. Fusion (FUSION), Jul. 2022, pp. 01–07.
[J2] B. Camajori Tedeschini, M. Brambilla, L. Barbieri, G. Balducci, and
M. Nicoli, “Cooperative lidar sensing for pedestrian detection: Data association
based on message passing neural networks,” IEEE Trans. Signal Process., vol. 71,
pp. 3028–3042, Aug. 2023. © 2023 IEEE. Reprinted, with permission, from IEEE.
[J3] B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Message passing
neural network versus message passing algorithm for cooperative positioning,”
IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 6, pp. 1666–1676, Aug. 2023. ©
2023 IEEE. Reprinted, with permission, from IEEE.

• Chapter 5: Refers to the Papers [J4], [J5], [J6] and [J7]. This chapter explores
cooperative learning in D-ML and FD-ML settings, mainly by means of real-world
experiments. Here, medical and IoT networks are studied, with main attention to the
privacy of data, non-IID characterizations, and convergence.

[J4] B. Camajori Tedeschini, S. Savazzi, R. Stoklasa, L. Barbieri, I. Stathopoulos,
M. Nicoli, and L. Serio, “Decentralized federated learning for healthcare networks:
A case study on tumor segmentation,” IEEE Access, vol. 10, pp. 8693–8708, Jan.
2022. © 2022 IEEE. Reprinted, with permission, from IEEE.
[J5] B. Camajori Tedeschini, S. Savazzi, and M. Nicoli, “A traffic model based
approach to parameter server design in federated learning processes,” IEEE Com-
mun. Lett., vol. 27, no. 7, pp. 1774–1778, May 2023. © 2023 IEEE. Reprinted,
with permission, from IEEE.
[J6] B. Camajori Tedeschini, S. Savazzi, and M. Nicoli, “Weighted consensus
algorithms in distributed and federated learning,” submitted to IEEE Trans. Netw.
Sci. and Eng., pp. 1–13, 2024
[J7] B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Split consensus
federated learning: an approach for distributed training and inference,” IEEE Access,
vol. 12, pp. 119 535–119 549, Aug. 2024. © 2024 IEEE. Reprinted, with permission,
from IEEE.

• Chapter 6: Relates to the Papers [C8] and [J9]. This chapter investigates the usage of
MARL algorithms in highly dynamic vehicular networks for performing CP. We com-
pared the proposed algorithm with Bayesian-filtering methods, especially regarding
communication efficiency and cooperation capabilities.

[C8] B. Camajori Tedeschini, M. Brambilla, M. Nicoli, and M. Z. Win, “Coopera-
tive positioning with multi-agent reinforcement learning,” in 2024 27th Int. Conf.
Inf. Fusion (FUSION), 2024, pp. 1–7.
[J9] B. Camajori Tedeschini, M. Brambilla, M. Nicoli, and M. Z. Win, “Multi-
agent reinforcement learning for distributed cooperative positioning,” IEEE Trans.
Intell. Veh., pp. 1–16, Oct. 2024. © 2024 IEEE. Reprinted, with permission, from
IEEE.
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Finally, Part III is divided into:

• Chapter 7: Pertains to the Paper [J10]. This chapter explores the distribution char-
acterization and compression of channel latent features in next-generation cellular
networks. We propose an anomaly detection scheme to efficiently predict the channel
NLoS identification, which outperforms current state-of-the-art methods.

[J10] B. Camajori Tedeschini, M. Nicoli, and M. Z. Win, “On the latent space
of mmWave MIMO channels for NLOS identification in 5G-advanced systems,”
IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1655–1669, May 2023. © 2023
IEEE. Reprinted, with permission, from IEEE.

• Chapter 8: Describes the Paper [J11]. In this chapter, we address the problem of
joint task optimization for simultaneous NLoS identification and static positioning in
next-generation cellular networks. The CP is then performed by means of efficient
latent features exchange and combinations among BSs.

[J11] B. Camajori Tedeschini and M. Nicoli, “Cooperative deep-learning posi-
tioning in mmWave 5G-advanced networks,” IEEE J. Sel. Areas Commun., vol. 41,
no. 12, pp. 3799–3815, Dec. 2023. © 2023 IEEE. Reprinted, with permission, from
IEEE.

• Chapter 9: Outlines the Papers [C12] and [J13]. This chapter investigates the general
integration of BNN into cellular tracking systems. For real-time mobile positioning,
we propose a novel BNN methodology that outputs the data and model uncertainties,
i.e., aleatoric and epistemic uncertainties, respectively, without requiring sampling
procedures.

[C12] B. Camajori Tedeschini, G. Kwon, M. Nicoli, and M. Z. Win, “Empowering
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• Chapter 10: Outlines the main contributions and key takeaways of the thesis, with a
discussion of possible future works.

Note that the conference articles have not been included in the related chapters for
space reasons. Given the vast amount of topics and presented methods, in Fig. 1.5
we report an overview of the methods described both in Part I regarding background
methodologies, as well as in the attached published papers in Part II and Part III.
Concisely, when the objective is to cooperative learn a model, we may adopt graph-
aware GNN models (e.g., the proposed MPNN for DA and CP), privacy-preserving
FL and SL methods and their proposed fully-decentralized versions (e.g., CFAdp and
SCFL), or non-stationary MARL algorithms such as the proposed ICP-MAPPO. On
the contrary, when the model is trained, e.g., with C-ML, the next step is to perform
inference. We may want, for example, to have a compressed representation of the latent
features for tasks such as anomaly detection with the proposed DAKDM model, or we
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may want to efficiently combine different DL models’ outputs to enhance inference,
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Learning in Agent Networks

In this chapter, we introduce the main learning techniques adopted in the thesis, by
highlighting where and how they are employed. The main application areas are the
medical field, IoT, and vehicular networks (see Figs. 1.1a, 1.1b, and 1.1c). We begin
by characterizing the general system model of MAS and main objective functions in
Sec. 2.1. Then, in Sec. 2.2, we restrict to the field of stationary C-ML, with particular
focus on uncertainty quantification. Subsequently, in Sec. 2.3, we analyze the case of
directly learning on graphs by leveraging the network structure. Furthermore, in Sec.
2.4, we pass from C-ML to D-ML with a main focus on data privacy and scalability
requirements. Finally, in Sec. 2.5, we briefly recap the Bayesian filtering paradigm in its
both centralized and distributed versions for the task of CP.
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Chapter 2. Learning in Agent Networks

2.1 System Model and Problem Formulation
We consider a network of agents that engage in a cooperative process to reach a common
objective. This is obtained by sensing the agents’ state and the surroundings, and by
taking actions based on the sensed data. The concept is illustrated in a C-ITS scenario
in Fig. 2.1, where the agents, i.e., vehicles, cooperate to improve state estimation by
dynamically selecting the radio links with the neighbors and sharing observations of
passive targets, e.g., poles.

The model is generally described as a Dec-POMDP [70–73], where at time t, a set of
cooperative agents V = {1, . . . , N (A)} interacts with each other forming a connectivity
graph G = {V , Et}. An edge (i, j) ∈ Et, where i ̸= j, signifies the existence of a
communication link from agent i to agent j. The neighbors’ set of agent i ∈ V is
denoted with Ni,t, and each agent is defined by the state s(A)

i,t ∈ S
(A)
i , with S(A)

i being
the state space of agent i which usually comprises kinematic parameters. Moreover,
each agent has the possibility of performing an action ai,t according to the specific
task. We indicate with at =

[
ai,t

]
i∈V
∈ A and s(A)

t =
[
s(A)

i,t

]
i∈V
∈ S(A) the joint action

and state, respectively, where A and S(A) represent the joint action and state spaces,
respectively. As a result of the joint action, the system produces an instantaneous reward
rt = R

(
s(A)

t , at

)
∈ R, where R denotes the reward function. The scenario may include a

set of passive targets T = {1, . . . , N (T)} that are detected by the agents. An example can
be found in cooperative sensing applications, e.g., C-ITS, where the agents are the CAVs
and the passive targets can be people, traffic lights, or trees (see e.g., DA [135, 136],
CP [37] and MOT [43]). Each target k ∈ T has a state s(T)

i,t and it is detected by agent i
if k ∈ Ti,t. In case the targets are present, the aggregate state of the system is denoted as

st =
[
s(A)

t

⊤
s(T)

t

⊤]⊤
, where s(T)

t =
[
s(T)

k,t

]
k∈T

.
The kinematic state transition of agent i and target k at time t are modelled respec-

tively as:

s(A)
i,t = f (A)

s

(
s(A)

i,t−1, ai,t, z
(A)
s,i,t−1

)
, (2.1)

and

s(T)
k,t = f (T)

s

(
s(T)

k,t−1, z
(T)
s,k,t−1

)
, (2.2)

where z(A)
s,i,t and z(T)

s,k,t represent the driving noise process, incorporating the uncertainty in
motion. The models in (2.1) and (2.2) are associated to state-transition PDFs denoted as
p

(
s

(A)
i,t |s

(A)
i,t−1,ai,t

)
and p

(
s

(T)
k,t |s

(T)
k,t−1

)
, respectively. Since the presence of the targets is a

peculiarity of sensing applications, from now on we do not consider the target state, while
it will be reintroduced for the DA and CP use-cases. In the case of physically distributed
agents, the state is considered agent-wise factored, i.e., S(A) = S(A)

1 × . . .× S(A)
N(A) , and

transition-independent, i.e., p
(
s

(A)
t |s

(A)
t−1,at

)
= ∏N(A)

i=1 p
(
s

(A)
i,t |s

(A)
i,t−1,ai,t

)
, meaning that

agent actions cannot affect each other state.
Agents usually cannot directly observe the state of the system. Therefore, this

uncertainty is modeled by incorporating observations (or measurements) of the state
oi,t, which may vary according to the application. At each time t, the system of agents
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Figure 2.1: 3D representation of the scenario with three vehicles and three objects (snapshot extracted
from CARLA software). Agent-to-agent communication links and agent-to-target detections are
indicated with black and red arrows, respectively.

receive a joint observation or measurement ot =
[
oi,t

]
i∈V
∈ O which is sampled

from the distribution p
(
ot|at−1, s

(A)
t

)
, where O is the set of joint observations. Each

observation oi,t of agent i is modelled as:

oi,t = fo
(
ai,t−1, s

(A)
i,t , z(A)

o,i,t

)
, (2.3)

where z(A)
o,i,t is the measurement noise process. If we fix the observation ot and action

at−1, the PDF p
(
ot|at−1, s

(A)
t

)
becomes function of the state s(A)

t and it is usually called
likelihood function. The system is also considered as observation-independent, i.e.,
p

(
ot|at−1, s

(A)
t

)
= ∏N(A)

i=1 p
(
oi,t|ai,t−1, s

(A)
i,t

)
, meaning that each agent’s observation is

influenced exclusively by its own state and action, independently by the other agents’
observations. Finally, since the states and rewards are not directly observable by the
agents (partially observable MDP), each agent i keeps track of the so-called histories
defined as hi,1:t = hi,t =

[
(ai,t′−1,oi,t′)

]t

t′=1
.

The goal of the agents is to exploit cooperation to optimize over a time hori-
zon H two main objective functions. First they aim at estimating the state ŝ(A)

i,t

according to the minimum mean square error (MMSE) criterion from the PDF
bψ(s(A)

i,t |oi,t,ai,t−1,hi,t−1) = pψ(s(A)
i,t |oi,t,ai,t−1,hi,t−1), also kwown as beliefs, param-

eterized by ψ. The optimal parameters ψ∗ are computed by minimizing the following
objective as:

ψ∗ = argmin
ψ

J(bψ) = argmin
ψ

E
{∑

t

∥∥∥s(A)
t − ŝ(A)

t

∥∥∥2

2

}
. (2.4)
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The second objective is to perform actions, sampled according to a policy PDF
πθ(ai,t|hi,t) = pθ(ai,t|hi,t) defined by θ, so to maximize the expected discounted cu-
mulative reward:

θ∗ = argmax
θ

J(πθ) = argmax
θ

E{R0} , (2.5)

where Rt = ∑H−1
t′=t γt′−t rt′ , namely reward-to-go, is the cumulative discounted reward

from time t to H (i.e., the end of the episode).
A compact representation of the Dec-POMDP scheme for a two-agent case is shown

in Fig. 2.2, where the process is generated by the interaction over time of an agent and
environment component. With reference to Fig. 2.1 and the task of efficient CP, we
may see the state of the environment (also known as world) component as the position
of the agents and the observations as the measurements of the state, e.g., agent-to-
agent (A2A) ranging measurements. On the contrary, the actions may be identified as
the communication link de/activation, while the reward plays the resulting effect on
the positioning error. It should be noted that, in the execution phase, the agents do not
observe either the state transitions of the environment or the rewards, and thus they
remain on the environment component. On the opposite, only observations are directly
transferred into the agent component and stored within histories, which are then used
for action sampling and state estimation. Histories are simply a direct or compressed
(e.g., latent) collection of all past actions and observations, and they are exploited in an
analogous way with respect to Bayesian filtering approaches, e.g., Kalman filter (KF).
Indeed, the state (e.g., position) estimation takes into account these histories to update
the agents’ beliefs about the current state. Finally, the actions produced by the agents on
communication link activation have a direct effect on the environment, and thus, they
are transitioned within the environment component.

2.1.1 Discussion and Contributions
One of the main difficulties in Dec-POMDP problems is how to simultaneously optimize
the two objective functions. Usually, conventional MARL algorithms just solve the
policy optimization problem, discarding the belief estimation for precise real-world
modelling. On the other hand, Bayesian filtering or time-aware DL solutions (e.g.,
RNN) mainly focus on the belief estimation problem. These concepts and one possible
unified solution are discussed in Papers [C8] and [J9], where we propose an algorithm
for performing simultaneous CP and efficient communication optimization. The main
idea is to link the two objective functions such that they become dependent on the same
input, e.g., state estimate. Subsequently, to prevent optimization conflicts, the training
process is divided into two phases, with each phase placing more focus on optimizing
one of the objective functions while still considering the other.

2.2 From Non-Stationary to Stationary Data
In order to optimize the objective functions in (2.4) and (2.5), the agents may either
continuously interact with the environment (online learning) or first collect a training
dataset and then perform optimization without interacting again with the environment
(offline learning) [137]. Online learning can subsequently be divided into on-policy,
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Figure 2.2: Dec-POMDP scheme for agent and environment evolutions. Superscript (·)′
stands for t + 1

for graphical purposes.

where we need to generate new samples each time the policy is changed, and off-
policy, where the learning process can utilize data collected from different policies, not
necessarily the one currently being improved. For a representation of online and offline
learning, we refer to Fig. 2.3, where we denote the training dataset or buffer as D. In
general, both in online and offline learning, we assume non stationarity of the data,
since to improve upon the behaviors captured in the dataset D, the learned policy must
enact a series of actions that diverge from those previously observed. Essentially, the
goal is to derive a policy that alters the established behavior in D, ideally enhancing
the performances. However, when the assumption on the data is IID among agents and
temporal dimensions, we can exploit standard ML techniques, e.g., supervised learning,
to achieve high performances on data belonging to the same distribution of training data.
In the following, we describe how stationarity of data can be exploited by the network
of agents to optimize problems in (2.4) and (2.5).

2.2.1 Stationary Learning
Stationary learning can be viewed as a subcategory of non-stationary learning, where
the optimization in (2.5) collapses to (2.4). Indeed, in conventional ML, i.e., non-RL,
frameworks, there is no more concept of agents’ actions, and the state becomes the target
variable, usually referred to as t1. Note that the new state t does not necessarily represent

1For easy of notation, we describe a univariate target variable, but the formulation can be straightforwardly extended to
multivariate cases.
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Figure 2.3: Different typologies of agent learning: (a) online (on-policy), (b) online (off-policy), and (c)
offline learning.

the kinematic parameters of the agents, but may be related to the ground truth or label
of a specific task, e.g., regression or classification. Moreover, in stationary learning,
the observations are usually referred to as input variables or features x. The complete,
i.e., aggregated, training dataset is defined as D = {(tm,xm) | tm ∈ Dt,xm ∈ Dx}|D|

m=1,
where m is the sample index. A widely employed model assumes the relation between
the dependent (t) and independent (x) variables in case of regression2 as:

t = fx(x) + zx(x) , (2.6)

with fx(x) being a non-linear function and zx(x) ∼ N
(
0, σzx(x)2

)
is a random noise. We

point out that (2.6) is a particular case of the relation in (2.3), where we directly express
the definition of the target (i.e., state) t just in function of the input (i.e., observation)
and the measurement noise.

The goal of stationary C-ML is to approximate the function fx(x) with a NN y(x,θ)
with parameters θ, i.e., t ⋍ y(x,θ) + zx(x) . Therefore, the final objective is to derive
the so called predictive distribution pt|x,D(t|x,D), which plays an analogous role of
the belief PDF. In case the parameters θ are considered deterministic, the predictive
distribution is directly parameterized by the likelihood function of θ as pt|x,D(t|x,D) =
pt|x,θ,D(t|x,θ,D), and the parameters are obtained by maximum likelihood estimation
(MLE) as:

θMLE = argmin
θ

J(Dt|Dx,θ) = argmin
θ
{− log p(Dt|Dx,θ)} =

|D|∑
m=1

∥∥∥tm − t̂m

∥∥∥2

2
,

(2.7)

where the negative log-likelihood of the whole training dataset J(Dt|Dx,θ) =
− log pDt|Dx,θ(Dt|Dx,θ) is called loss or error function and it is derived from:

pDt|Dx,θ(Dt|Dx,θ) =
|D|∏

m=1
N

(
tm; y(xm,θ), σzx(xm)2

)
, (2.8)

assuming no multicollinearity in the sample and feature domains. In (2.7), t̂ is called
predictive mean and it is identified as:

t̂ = E t∼ p(t|x,θ,D)

{
t|x,θ,D

}
⋍ y(x,θ) . (2.9)

2A similar formulation can be carried out for classification tasks.
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Note that (2.7) is the corresponding optimization problem in (2.4), where the beliefs
are substituted by the predictive distribution. In case the parameters θ are considered
stochastic, a Bayesian framework can be adopted, namely BNN. This implies defining
a prior distribution on the parameters pθ(θ), which accounts for the uncertainty of the
model due to the finite size of the training dataset. The predictive distribution is then
computed as:

pt|x,D(t|x,D) =
∫
θ

pt|x,θ(t|x,θ′)pθ|D(θ′|D)dθ′ ⋍ 1
Ns

Ns∑
ℓ=1

p(t|x,θℓ), (2.10)

where the posterior PDF pθ|D(θ|D) is directly or indirectly estimated according to the
specific BNN methods. The integral approximation in (2.10) is obtain by sampling Ns
times θℓ from pθ|D(θ|D). Finally, the predictive mean is obtained as:

t̂ = E{t|x,D} ⋍ 1
Ns

Ns∑
ℓ=1

∫
t
t′p(t′|x,θℓ)dt′ ⋍ 1

Ns

Ns∑
ℓ=1

y(x,θℓ) . (2.11)

2.2.2 Learning Uncertainty Quantification
Whenever computing the predictive mean in (2.11), we may be interested in also evaluat-
ing the uncertainty of the prediction. Indeed, this can be useful to assess the reliability of
the ML model, particularly in critical applications such as CAVs. We usually distinguish
between aleatoric and epistemic uncertainties. Aleatoric uncertainty originates from the
data generation process described in (2.6) as:

V{t|x,θ} = V{zx(x)|x,θ} = σzx(x)2. (2.12)

Given that every training point in D includes a realization of the noise zx(x), this
type of uncertainty is inherent within the data itself and cannot be diminished by
adding more training samples. In case the noise zx(x) is a function of x, we talk about
heteroscedastic aleatoric uncertainty, whereas if it is independent of the input x, we
talk about homoscedastic aleatoric uncertainty [138]. Still, in both these cases since
it is data-dependent, it can be learned by a deterministic NN through a specific loss
function with the model σzx(x)2 ⋍ yal(x,θ) + ξal [107], where yal(x,θ) is an additional
NN output which predicts the aleatoric uncertainty of x, and ξal ∼ N (0, σξal

2).
Conversely, epistemic uncertainty arises from the variability in the NN parameters,

represented by the random variables θ. This variability contributes to the measure of
uncertainty in the output as:

V{t|x, zx(x)} ⋍ V{y(x,θ)|x, zx(x)} . (2.13)

In traditional NNs, where parameters are estimated as point values, this type of uncer-
tainty is considered zero. However, in BNN, epistemic uncertainty can be mitigated and
decreased by incorporating additional training data [138]. Therefore, with BNN we are
able to express the total predictive variance as follows:

V{t|x,D} ⋍ 1
Ns

Ns∑
ℓ=1

∫
t

(
t′ − E{t|x,D}

)2
p(t′|x,θℓ)dt′
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Figure 2.4: Epistemic and aleatoric uncertainty visualization.

⋍ V{y(x,θ)|x,D}+ V{zx(x)|x,D}

⋍ 1
Ns

Ns∑
ℓ=1

y(x,θℓ)2−
[

1
Ns

Ns∑
ℓ=1

y(x,θℓ)
]2

+ 1
Ns

Ns∑
ℓ=1

yal(x,θℓ) , (2.14)

where the first two terms are the epistemic uncertainty prediction, while the last term is
the aleatoric uncertainty prediction.

2.2.3 Discussion and Contributions
The primary advantage of BNNs is their ability to differentiate between the two types
of uncertainties, thus separating the uncertainty due to the variance of the estimated
parameters and the intrinsic variance present in the data. This is particularly useful
for identifying input domains where additional data collection could reduce overall
prediction uncertainty. For illustration, in Fig. 2.4, we present a toy case where the
intrinsic noise in the data increases along the x-axis. By distinguishing between these
uncertainties, we can explain the source of model uncertainty and make informed
decisions on where to gather more useful data. To help better visualize the uncertainties
in a familiar context, in Fig. 2.5 we show the uncertainty estimation obtained in a
3D scenario (similar to Fig. 2.1) with a BNN. In particular, we divided an area of
20× 20 m into four zones: bottom-left (Fig.2.5a.1) with high aleatoric and epistemic
uncertainties; top-left (Fig.2.5a.2) with high aleatoric and low epistemic uncertainties;
bottom-right (Fig.2.5a.3) with low aleatoric and high epistemic uncertainties; and top-
right (Fig.2.5a.4) with low aleatoric and low epistemic uncertainties. In each quadrant,
we then reported the 1-σ uncertainty ellipse for the aleatoric and total uncertainty, and
the derived approximated Gaussian PDF. Note that, by gathering more data points, we
are able to decrease only the blue area (epistemic). Therefore, by fully evaluating the



Chapter 2. Learning in Agent Networks

(4)(3)

(2)(1)

x2

x1
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Figure 2.5: Epistemic and aleatoric uncertainty visualization in a 3D scenario. (a) Bird’s-eye view
representation and (b) 3D representation obtained through Google Maps, RenderDoc, and Blender
software.

two uncertainties, we conclude that it is beneficial to gather more data in Fig. 2.5a.2 and
it is useless in Fig. 2.5a.3.

However, the main drawback of BNNs is that they require Ns samples to fully evaluate
those uncertainties. This can represent an issue in real-time applications, such as mobile
tracking, where performing sampling operations may accumulate an unacceptable delay.
Existing real-time BNNs methods, e.g., BDK, are based on teacher-student techniques
where we practically train two models: a teacher BNN (T), trained with any Bayesian
methodology, and a student NN (S), trained to imitate the output of the teacher (both in
terms of output mean and variance). The new input-output model becomes:

(T) : t = y(T)(x,θ) + z(T)
x (x)

(S) :
{

t = y(S)(x,w) + z(S)
x (x)

σ
z

(S)
x

(x)2 = y
(S)
al (x,w) + ξ(S)

al ,
(2.15)

where z(S)
x (x), z(S)

x (x) and ξ(S)
al are Gaussian noises, and w are the parameters of the

student NN. These methods, however, fail to fully capture the distinction between the
two uncertainties, simply because they only output the aleatoric uncertainty. To handle
this problem, in Paper [J13], we present an original BNN technique, with specific loss
functions and training algorithm, to perform real-time predictions, while maintaining
the full advantages of BNNs in terms of robustness and uncertainty evaluation.

To better highlight the advantages of the proposed BNN technique, namely BBK, we
now report a comparison analysis of the quality of the uncertainty quantification provided
by traditional sampling-based BNN methods, conventional NN, and the proposed BBK
algorithm in the same case of Fig. 2.4. In particular, for the ground truth process,
we employed a GP with a radial basis function (RBF) kernel to generate the data.
Specifically, the GP has an input space defined by x ∈ [−5, 5], with a length scale and
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variance set to capture smooth variations in the data. The aleatoric (data) noise is defined
as a heteroscedastic function, increasing as |x + 2|, to simulate scenarios where data
uncertainty grows across the input space. Regarding the BNN methods, we compared
a Markov chain Monte Carlo (MCMC) method, i.e., the stochastic gradient Langevin
dynamics (SGLD) [139] algorithm, and two VI-based methods, i.e., Monte Carlo (MC)-
Dropout [140] and Bayes by backpropagation (BBP) [141]. The conventional NN was
trained to learn the aleatoric uncertainty with the following loss function [138]:

J(Dt|Dx,θ) = 1
|D|

|D|∑
m=1

{
∥y(xm,θ)− tm∥2

2
2yal(xm,θ) + 1

2 log
(
yal(xm,θ)

)}
, (2.16)

where the first term in the summation penalizes the squared error inversely weighted
by the predicted aleatoric uncertainty, encouraging the model to increase the predicted
uncertainty in regions with higher residual errors. The second term acts as a regularizer,
preventing the model from assigning excessively high uncertainty values by penalizing
large aleatoric predictions. Finally, the teacher-students methods, i.e., BDK [111] and
the proposed BDK, adopted the SGLD as the teacher model to train a student network
with high-quality, sample-based estimates of uncertainty.

From the results, shown in Fig. 2.6, we can see that the sampling-based BNN models
in the first row provide both aleatoric and epistemic uncertainties estimation through
multiple forward passes but require extensive computational resources for real-time
applications. In contrast, conventional NN models lack mechanisms to quantify the
epistemic uncertainty and just provide the estimation of the aleatoric one. Moreover,
we can see that in OoD areas, e.g., |x| > 2, the model tends to be overconfident
in its prediction by assigning either very large or small values of uncertainties. The
teacher-student method BDK reduces this effect by learning from the teacher the overall
uncertainty quantification in OoD areas, however, without distinguishing them. Finally,
unlike standard BDK, the proposed BBK student model achieves comparable uncertainty
quantification with respect to the ground truth process, and it is able to differentiate
between aleatoric and epistemic uncertainties, allowing for more fine and efficient
uncertainty quantification.

2.3 From Single Node to Graph Learning
Whenever dealing with learning in graphs, it is intuitive to use NN that are directly
integrated with the graph’s structure, leveraging its topology and connectivity. These
types of NN are known as GNN [44, 142] and they have been explored across various
learning paradigms, including RL, unsupervised, semi-supervised, and supervised learn-
ing contexts, for their capability to scale and adapt to larger, unseen graphs. Indeed,
similar to boosting methods [143], they adopt very simple or weak models, whose bias
is reduced with subsequent NMP message passing iterations across the graph. We would
like to point out that GNN perform centralized learning on graphs, that is, all the data is
gathered or transferred into a single computing node where graph learning is performed.
Therefore, the graph structure is a logical structure that may or not reflect the physical
graph. The main advantage is that, if the real network structure that generated the data
changes, the same NN can be adopted for inference (and/or retraining).
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Figure 2.6: Comparison of different methodologies for uncertainty estimation: (a) GP, (b) SGLD, (c)
MC-Dropout, (d) BBP, (e) NN, (f) BDK, and (g) BBK.

In particular, vanilla GNN are composed of three NN, or update functions, namely
yv(·), ye(·), and yt(·) for node, edge and global inference, respectively. As in conven-
tional learning, the goal is to learn the correspondence between target t and input features
x by optimizing the update functions’ parameters. The forward, i.e., inference part, starts
with the encoding3 of the input features x into node and edge embedding representa-
tions, defined as h(0)

v and h(0)
e , respectively. These are composed by the single-node

and edge embeddings as h(0)
v =

{
h(0)

v,i

}
i∈V

and h(0)
e =

{{
h(0)

e, j→i

}
j∈Ni

}
i∈V

, respectively.

Moreover, also the target t is encoded into global attributes or embeddings h(0)
t . For

each message passing iteration p, the logical building blocks and detailed algorithm are
shown in Fig. 2.7 and Algorithm 1, respectively, where ρe→v, ρv→t and ρe→t are called
aggregation functions and can be whatever functions that are insensitive to input order
(e.g., maximum, mean, element-wise summation).

GNN are a general framework that includes many typologies of learning on graphs,
such as independent recurrent blocks (IRB) [144], MPNN [145], non-local neural
networks (NLNN) [146], relational networks (RN) [147] and deep sets (DS) [148].
Among these, MPNN are ideal when dealing with heterogeneous graphs with rich
edge attributes and where the focus is on accurately capturing the interaction dynamics
between nodes via these attributes. Indeed, the node and edge embeddings are not
any more functions of the global ones, but just depend on the local neighborhood’s
aggregated messages and possibly the individual node’s or edge’s features. As an

3We do not define the encoding NN to focus on the peculiar mechanism and models of GNN.



Chapter 2. Learning in Agent Networks

<latexit sha1_base64="drsA5GnUJCEwkO276g4VOMDzBO0=">AAACY3icbVDbahsxEJW3lyROL87tqRRETSB9qNkNufQx0JcWSkib2g54XTMrj2M1WmmRZhOM2I/pa/tF/YD+R+WNKXXSAcHhzJk5o5MVSjqK41+N6MHDR49XVtea60+ePnve2tjsOVNagV1hlLEXGThUUmOXJCm8KCxCninsZ1fv5v3+NVonjf5CswKHOVxqOZECKFCj1k76ueen1cin9tpTVX31e8XratRqx524Ln4fJAvQZos6G200jtKxEWWOmoQC5wZJXNDQgyUpFFbNtHRYgLiCSxwEqCFHN/T1/RXfDcyYT4wNTxOv2X8nPOTOzfIsKHOgqbvbm5P/6w1KmrwdeqmLklCLW6NJqTgZPg+Dj6VFQWoWAAgrw61cTMGCoBBZs7nL+x9Oz998hGzJ8UZqpw3VCVZBlNYGvtaehzONcksf9gJy+GbCfhyjE1Op5d/xkHRyN9f7oLffSY46h58O2if7i8xX2Qv2iu2xhB2zE/aenbEuE8yz7+wH+9n4Ha1Hm9H2rTRqLGa22FJFL/8AJxm5Pw==</latexit>

h
(p)
t

<latexit sha1_base64="MEfzqQmCTcCvwtumL7gjwQylg4k="></latexit>

h
(p�1)
t

<latexit sha1_base64="bBYWNBLGMVIarRjnCMAnTHQwheA="></latexit>

h(p)
v

<latexit sha1_base64="ayOOMeICRk1DF+b37pa5NBRjCEM="></latexit>

h(p�1)
v

<latexit sha1_base64="lJIlOscTi16PGZJguxdJsX2lENY="></latexit>

h(p�1)
e

<latexit sha1_base64="riyQBmPoneayY3EBm9LiCHVMD7k="></latexit>

h(p)
e

<latexit sha1_base64="4zULxvsFahRuqa1C66igLbDTqfI="></latexit>ye

<latexit sha1_base64="ILpan73P27FCQmDn64vEgk8cpbk="></latexit>yv

<latexit sha1_base64="7Kq+I7I3hiOYiDczrUZYDp+Vpz4="></latexit>⇢e!v

<latexit sha1_base64="tzBVKYt2jd+6CTeW4La7IKi6yR0="></latexit>yt
<latexit sha1_base64="wz0uMHxdmIBtzmiCmuVjIjscI3g="></latexit>⇢v!t

<latexit sha1_base64="cqakMeD9YskUt5UTt0kgz817C9s=">AAACanicbVBdaxNBFJ2s1db4ldYnqQ+DseCLYbfY1seCLwoilZqmkA3h7uSmmXY+lpm7LWHYF3+Nr/pv/A/+CCfbIE3rhYHDuefOufcUpZKe0vR3K7m3dv/B+sbD9qPHT54+62xunXhbOYF9YZV1pwV4VNJgnyQpPC0dgi4UDoqLD4v+4BKdl9Z8o3mJIw1nRk6lAIrUuPMydzM7DrkGmjkdsOY5WZ67y0B1Pe50017aFL8LsiXosmUdjTdb+/nEikqjIaHA+2GWljQK4EgKhXU7rzyWIC7gDIcRGtDoR6E5o+Y7kZnwqXXxGeINe3MigPZ+rouoXKzrb/cW5P96w4qm70dBmrIiNOLaaFopHi9dZMIn0qEgNY8AhJNxVy5m4EBQTK7d3uGDT1+O336GYsXxShpvLDVB1lGUNwah0R7HNa3yKwcHARrObfwfJ+jFTBr5bzwmnd3O9S442e1l+729r++6h7vLzDfYNnvF3rCMHbBD9pEdsT4T7Dv7wX6yX60/yVbyItm+liat5cxztlLJ678EUbxw</latexit>⇢e!t

Figure 2.7: Single building blocks iteration of the GNN message passing procedure.

Algorithm 1 GNN message passing procedure

1: procedure GNN(h(p−1)
v ,h(p−1)

e ,h
(p−1)
t ) ▷ Iteration p

2: for each node i ∈ V do ▷ Update edge embeddings
3: h

(p)
e, j→i = ye

(
h

(p−1)
v,i ,h

(p−1)
v,j ,h

(p−1)
e, j→i,h

(p−1)
t ,θ

)
∀j ∈ Ni

4: end for
5: for each node i ∈ V do ▷ Update node embeddings
6: h

(p)
v,i = yv

(
h

(p−1)
v,i , ρe→v

({
h

(p)
e, j→i

}
j∈Ni

)
,h

(p−1)
t ,θ

)
7: end for
8: h

(p)
t = yt

(
ρe→t

(
h(p)

e
)
, ρv→t

(
h(p)

v
)
,h

(p−1)
t ,θ

)
▷ Update global embeddings

9: end procedure

example, we now describe the problem of node regression and its particular loss function
to update the NN parameters.

2.3.1 Message Passing Neural Networks
In MPNN for node regression, the global embeddings are usually represented directly by
the target ti (for each node i), or by an encoded version of it, without being elaborated
by the message passing procedure. At each iteration p = 1, . . . , NMP, each node i ∈ V
sends the following message to its neighbors j ∈ Ni:

h(p)
e, j→i = ye

(
h(p−1)

v,i ,h(p−1)
v,j ,h(p−1)

e, j→i,θ
)
∀j ∈ Ni , (2.17)

with:

h(p)
v,i = yv

(
h(p−1)

v,i ,
∑

j∈Ni
h(p)

e, j→i,θ
)
, (2.18)

where we adopted the summation as an aggregation function. An illustration of the
updates is shown in Fig. 2.8. Subsequently, the targets are predicted as:

t̂
(p)
i = yt

(
h(p)

v,i

)
∀i ∈ V , (2.19)

where we considered the global update function for each node. After NMP message
passing iterations, the final target prediction is t̂ (NMP)

i . For each input sample xm (related
to each node and/or edge according to the problem) of the training dataset D, the NN
parameters are updated with MLE through the following loss function:

J(Dt|Dx,θ) =
|D|∑

m=1

NMP∑
p=1

∑
i∈V

∥∥∥ti,m − t̂
(p)
i,m

∥∥∥2

2
, (2.20)
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Figure 2.8: MPNN iteration with (a) edge embeddings’ update, and (b) node embeddings’ update,
represented in red.

where we removed constant values in θ such as normalization terms. Note that the
target at each node i and input sample m are considered as additional input samples that
reduce the variance of the model. On the contrary, the message passing iterations p are
considered as subsequent layer of a bigger model (i.e., the target ti,m is not function of
the iteration p), thus reducing the bias of the weak update functions models.

2.3.2 Discussion and Contributions
Given the ability of MPNN on learning complex non-linear relations within graphs
and being scalable in unseen much bigger networks, in Papers [C1], [J2] and [J3],
we propose their application or inclusion into sensing tasks such as DA and CP. In
particular, in Papers [C1] and [J2], we introduce a new logic graph that maps the vehicles’
detections into nodes, for subsequent edge classification (i.e., detections’ association)
by means of a custom MPNN model. Given the foreseen usage of these methods in
real-world applications, we tested the MPNN against conventional SPADA algorithms
in terms of realistic noise distributions, e.g., derived from object detection models like
Pointpillars [149]. The proposed MPNN-based DA method has also been integrated into
general ICP systems in Papers [J15] and [J17] (not included in the thesis).

On the contrary, in Paper [J3], due to their analogy with the message passing proce-
dure in MPA, we integrated MPNN into a belief propagation (BP)-inspired CP scheme.
We propose a new LSTM-MPNN model that is trained with the C-ML paradigms,
whereas the inference is performed in a distributed way among agents. In particular, the
LSTM learns the kinematic models of the agents and produces the prediction phase (or
step) of conventional Bayesian-filtering methods. On the contrary, the MPNN elaborates
the observations gathered at each agent by means of the message passing procedure. For
a detailed description of the MPA methodology for CP, we refer to Sec. 2.5.

2.4 From Centralized to Decentralized Learning
With the rapid increase in volume and complexity of data available at different locations
and machines, C-ML may face difficulties in terms of scalability and efficiency. Conse-
quently, there is a growing demand for alternative methodologies that can effectively
address the increased complexity and security issues while retaining the benefits of
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Figure 2.9: Schematic example of (a) FL and (b) SL in a network of two clients and a PS. The client
model parameters and gradients are indicated with θi and ∇Ji(θi), respectively. On the contrary,
the global or PS model parameters and gradients are indicated with θPS and∇JPS(θPS), respectively.
The weighted average of the FL is indicated with a thick bar. Finally, the forward pass is indicated
with F (·), back-propagation is indicated with the model gradients inside a self-loop, and dashed lines
represent the next timestamp.

conventional ML techniques. D-ML [53, 150, 151] has emerged as a viable solution
for distributing the processing and avoiding the aggregation of data at a single central
entity. Popular D-ML mechanisms are FL [11] and SL [58], which allows spatially
distributed agents (i.e., clients) to cooperatively train a global ML model without the
need of exchanging their local private data. In the following, we report the FL and SL
methodology for the deterministic parameters θ case, but a similar Bayesian formulation
can be applied as well. The objective is always to optimize (2.7) but in a distributed
manner.

A conceptual comparison of the two D-ML methods is reported in Figure 2.9, in
which we present the FL (Figure 2.9a) and SL (Figure 2.9b) frameworks, indicating their
main steps indexed in chronological order. Specifically, the steps for FL are: 0) local
model optimization, 1) aggregation, 2) broadcast of the updated global model; while the
steps for SL are: 0) client forward pass and exchange of smashed data, 1) PS forward
pass and back-propagation, 2) exchange of PS gradients, 3) client back-propagation, 4)
client model exchange with next neighbors.

2.4.1 Federated Learning

In FL, clients individually maintain and train local copies of DL models using their own
local data, while a coordinating PS combines these models into a global one shared
among all clients. Specifically, the objective function of the FL procedure is to obtain a
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global DL model defined by the parameters θ by minimizing:

θPS = argmin
θ

J(Dt|Dx,θ) , (2.21)

where the loss function J(Dt|Dx,θ) is specified by:

J(Dt|Dx,θ) = 1
N (A)

N(A)∑
i=1

|Di|∑
i′∈V |Di′ |

Ji(Dt,i|Dx,i,θ) , (2.22)

with Ji representing the loss determined by client i utilizing the local dataset Di =
{(tm,xm) | tm ∈ Dt,i,xm ∈ Dx,i}|Di|

m=1. To obtain the global model θPS, an iterative
process is carried out with each iteration involving a local model optimization step
performed by the client and followed by an aggregation step executed on the PS.

At federated round n = 1, . . . , NFL, a set Vn ⊆ V of clients is chosen to carry out
the training procedure, i.e., the local model optimization step. Clients are required to
generate local models via optimization in the FL process, typically employing super-
vised and gradient-based schemes, e.g., Adam or stochastic gradient descent (SGD)
optimizers [152], with mini-batch Bi and learning rate η. Each client i ∈ Vn carries out
Nepoch local epochs before sending their model to the PS, which is tasked with updating
the global model.

In the vanilla PS-based FL, i.e., FedAvg [49], the number of samples |Di| from each
client determines the weights used in the aggregation step to execute a weighted average:

θPS,n =
∑

i∈Vn

αi,Vnθi,n, (2.23)

where θPS,n is the PS global model, θi,n is the local model of client i and
αi,Vn = |Di|∑

i′∈Vn
|Di′ | are the mixing weights related to client i.

On the contrary, FD-ML architectures, such as decentralized FL, do not employ
the PS but rather share their local model(s) repeatedly over A2A links so as to reach a
consensus on a global model (consensus-based FL) [18]. The consensus-based algorithm,
referred to as CFA, operates as follows. At round n, each client i ∈ Vn performs a
local optimization step and then exchanges the model weights with its neighbors Ni,n.
Subsequently, an aggregation step is executed, similar to the PS:

ψi,n = θi,n + ϵFL,n

∑
k∈Ni,n

αk, Ni,n
(θk,n − θi,n) , (2.24)

where ψi,n represents the aggregated model, ϵFL,n is the consensus step-size which
modulates the memory of previous models and αk, Ni,n

= |Dk|∑
k′∈Ni,n

|Dk′ | are the mixing

weights related to client k, based on the number of samples retained in each client. Note
that the aggregated model ψi,n represents an estimate of the global model as seen by
client i and its neighborhood Ni,n. However, as opposed to (2.23), here the aggregated
model is obtained by taking into account the error between the local model and the
neighbor ones. The complete pseudo-code for CFA is presented in Algorithm 2. For
ease of notation, the local model optimization step has been represented as a single-batch
model update. It should be noted that the algorithm operates in the same manner if
clients exchange gradients of the local model update instead of model parameters.
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Algorithm 2 Consensus-driven Federated Averaging

1: procedure CFA(Ni,n, ϵFL,n, η) ▷ Run on client i
2: initialize θi,0 ← client i
3: for each round n = 1, . . . , NFL do ▷ Training loop
4: broadcast θi,n

5: receive {θj,n}j∈Ni,n

6: eq. (2.24)
7: θi,n = ModelUpdate(ψi,n)
8: end for
9: end procedure

10: procedure MODELUPDATE(ψi,n) ▷ Model opt. step
11: compute F (ψi,n) ▷ Forward-pass
12: compute ∇Ji,n(ψi,n) ▷ Backward-pass
13: ψi,n ← ψi,n − η∇Ji,n(ψi,n) ▷ Local SGD
14: end procedure

2.4.1.1 Discussion and Contributions

A main drawback of conventional FL algorithms, is that they are synchronous, meaning
that the scan of time is regulated by the federated round index n. This can be an issue
whenever we are in the presence of heterogeneous agents, i.e., with different local update
completion times due to heterogeneous computational capabilities or data. Moreover, in
case of low network or agent reliability, the lack of local updates may delay or even stop
the FL process (as the PS usually waits for the selected agents’ updates). To address
the synchronization issues, asynchronous FL can be adopted, where the PS updates the
global model at t = nTPS according to:

θPS,t = (1− ϵFL,t)θPS,t−TPS + ϵFL,t

∑
i∈Vt

αi,Vtθi,t−Ti
, (2.25)

where TPS controls the time interval between two updates of the global model, Ti is the
time gap needed by the agent i to obtain a local update, and θi,t−Ti

is the model available
at time t−Ti at client i. Given the key importance of carefully adjusting the TPS interval,
in Paper [J5], we proposed a TPS policy-optimization that accounts for both different
sample distributions among agents, as well as, different computational capabilities.

Another way for handling the heterogeneity of agents, especially under highly non-
IID conditions, is to perform a suitable weighting of the local parameters so as to value
differently the contribution of each local update in the global model. In PS-based FL,
this has been proposed with the FedAdp algorithm [52], where the new aggregation
weights α̃i,Vn are computed by taking into account the angle among the gradients of the
local and global models as:

βi,n = arccos

〈
∇J(θPS,n)⊤,∇Ji(θPS,n)

〉
∥∥∥∇J(θPS,n)

∥∥∥
2

∥∥∥∇Ji(θPS,n)
∥∥∥

2

, (2.26)

where∇Ji(θPS,n) = −(θi,n − θPS,n−1)/η is the approximated local gradient of agent i,
and∇J(θPS,n) = ∑

i∈Vn
αi,Vn∇Ji(θPS,n) is the global gradient. In principle, the bigger

the angle βi,n is, the greater the contribution of agent i will be in the global model.
Inspired by the adaptive weighting mechanism in PS-based FL and by the WAC schemes



Chapter 2. Learning in Agent Networks

Algorithm 3 Split Learning

1: procedure SL(η)
2: initialize θi,0 ∀ i ∈ V
3: for each round n = 1, . . . , NFL do ▷ Training loop
4: for client i = 1, . . . , N (A) do ▷ Run on client i
5: compute F (θi,n) ▷ Client Forward-pass
6: send F (θi,n) to PS
7: receive

∇JPS,n(θPS,n) = PSUpdate(F (θi,n))
8: θi,n = ClientUpdate(θi,n)
9: send θi,n to client i + 1

10: end for
11: end for
12: end procedure
13: procedure CLIENTUPDATE(θi,n) ▷ Model opt. step
14: compute ∇Ji,n(θi,n) ▷ Client Backward-pass
15: θi,n ← θi,n − η∇Ji,n(θi,n) ▷ Local SGD
16: end procedure
17: procedure PSUPDATE(F (θi,n)) ▷ Model opt. step
18: compute F (θPS,n) ▷ PS Forward-pass
19: compute ∇JPS,n(θPS,n) ▷ PS Backward-pass
20: θPS,n ← θPS,n − η∇JPS,n(θPS,n) ▷ Local SGD
21: end procedure

in consensus approaches, in Paper [J6], we propose a decentralized FL algorithm, i.e.,
CFAdp, that optimizes the neighbors model weighting for improved convergence and
accuracy under both sample and label data skewness.

2.4.2 Split Learning
In the simplest SL framework, the model parameters θ are split into two parts (one
for the PS and for the clients), i.e., θPS,n and θi,n. Note that, here, differently from
FL, the model structures of θPS,n and θi,n are distinct. Thus, to complete inference
and back-propagation procedures, an exchange of smashed data and gradients must be
carried out between PS and clients. The pseudo-code for SL algorithm is provided in
Algorithm 3, reporting for simplicity only the synchronization of the learning process
in peer-to-peer mode [59]. At the end of the procedure, SL permits to attain identical
results to a traditional (i.e., centralized) training procedure, where all layers are available
at the same entity, since it involves the same steps and processes (forward propagation
and back-propagating gradients), just applied in a different order.

A drawback of the SL procedure is that it must be executed sequentially by each
client. To address this issue, SFL algorithms [62, 63, 153] remove the constraint on the
sequentiality of inter-client model exchange, performing parallel forward propagation of
the client-side models. The PS then executes both the forward propagation and back-
propagation on its server-side model using each client’s transformed data independently,
allowing a high degree of parallelism. Once the gradients are sent back to the clients for
their own back-propagation, a step of FedAvg is performed by the PS and by the clients
through an additional PS for the federated part, i.e., FPS. We refer to Figure 2.10 for a
synthetic representation of the SFL workflow.
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Figure 2.10: SFL framework with vanilla architecture composed of a split PS, i.e., SPS, and a federated
PS, i.e., FPS.

2.4.2.1 Discussion and Contributions

Despite solving the parallelization issues of SL, SFL algorithms still rely on a centralized
PS, which can be a single point of failure, as well as a limitation for massive networks.
In Paper [J7], we tried to solve this issue by proposing a fully decentralized, privacy-
preserving, and low-complexity architecture that performs both parallel training and
testing procedures. This architecture, namely SCFL, can be seen as the union between
a fully decentralized MPNN and CFA algorithms. Practically, each agent holds a low-
complexity model, whose bias is reduced by means of a message passing procedure
where the messages are physically exchanged among agents. The system is privacy-
preserving since the agents only exchange the smashed data resulting from intermediate
message passing steps. Moreover, the training is performed in parallel between agents
through a CFA step, that can be included or excluded from the message passing iteration.

2.5 From Learning to Bayesian Filtering
The problem of state learning can be simplified by manually defining the motion and mea-
surement models in (2.1) and (2.3), respectively. This framework, known as Bayesian
filtering [154], aims at optimizing the objective in (2.4) without the presence of agents’
actions. Therefore, the agents receive just the observations from the environment and
the stored histories coincide with the collected observations. We refer to Fig. 2.11 for a
comparison between Bayesian filtering and RL frameworks.

In CP use cases, the agents’ motion is modelled according to the category of agents,
e.g., random walk and constant velocity models for pedestrians and vehicles, respectively.
The parameters of the driving noise process in z(A)

s,i,t are tuned according to predetermined
noise statistics on collected agents’ trajectories. Whenever passive targets are present
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Figure 2.11: Comparison between Bayesian filtering and RL.

in the scene, an ICP approach can be adopted to coherently fuse the measurements at
different agents [10]. Indeed, passive entities, such as traffic lights, road signs, or poles,
are cooperatively detected by multiple agents and exploited as noisy anchor points to
enhance the state (e.g., location) accuracy. In C-ITS scenarios, the vector of all available

measurements of agent i at time t is defined as oi,t =
[
o(GNSS)

i,t

⊤
o(A2A)

i,t

⊤
o(A2T)

i,t

⊤]⊤
,

where o(GNSS)
i,t , o(A2A)

i,t and o(A2T)
i,t are the global navigation satellite system (GNSS),

A2A and agent-to-target (A2T) observations, respectively. The A2A observations are
obtained from an active sensing technology for sidelink positioning offering relative
A2A location measurements for any pair of agents (i, j) ∈ Et. On the contrary, the
A2T observations derive from a passive technology (e.g., camera, light detection and
ranging (LIDAR), radio detection and ranging (RADAR), or any combination), used by
agent i to detect the set of passive objects Ti,t ⊆ T in proximity at time t.

By considering the noise statistics as Gaussian and by modelling the agent state s(A)
i,t

with the 2D position and velocity and the target state s(T)
k,t with the 2D position, we can

define the observations as:

o(GNSS)
i,t = H(A) s(A)

i,t + z(GNSS)
o,i,t , (2.27)

o(A2A)
i,j,t = H(A)

(
s(A)

i,t − s(A)
j,t

)
+ z(A2A)

o,i,j,t , (2.28)

o(A2T)
i,k,t = H(A)s(A)

i,t − s(T)
k,t + z(A2T)

o,i,k,t , (2.29)
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whereH(A) = [I2 02×2] ∈ R2×4 and z(GNSS)
o,i,t , z(A2A)

o,i,j,t and z(A2T)
o,i,k,t are zero-mean Gaussian

with covariancesR(GNSS)
o,i,t = σ(GNSS)2

I2,R(A2A)
o,i,j,t = σ(A2A)2

I2 andR(A2T)
o,i,k,t = σ(A2T)2

I2,
respectively. Note that the choice of Gaussianity is completely arbitrary and that, as
for the driving noise statistics, the measurements’ covariances need to be tuned from
collected observations.

The overall state estimate ŝt is obtained as in RL through the MMSE estimator as:

ŝt = E{st|h1:t} = E{st|o1:t} =
∫
st b(st|o1:t) dst , (2.30)

where the system belief b(st|o1:t), known as joint posterior PDF, is computed at each
time t from a prediction phase with the Chapman-Kolmogorov equation:

b(st|o1:t−1) =
∫

p(st|st−1) b(st−1|o1:t−1) dst−1 , (2.31)

and an update phase [155]:

b(st|o1:t) ∝ p(ot|st)b(st|o1:t−1) . (2.32)

Since, as assumed in Chap. 2.1, the system is observation-independent, the likelihood
function of st is computed as:

p
(
ot|st

)
= p

(
o

(GNSS)
t |s(A)

t

) N(A)∏
i=1

∏
j∈Ni,t

p
(
o

(A2A)
i,j,t |s

(A)
i,t , s

(A)
j,t

)

×
N(A)∏
i=1

∏
k∈Ti,t

p
(
o

(A2T)
i,k,t |s

(A)
i,t , s

(T)
k,t

)
. (2.33)

In case the motion and measurements models in (2.1) and (2.3), respectively, are linear
and with a Gaussian noise, the state estimate in (2.30) reduces to a KF as described
in [10, 128], with efficient resolution in matrix form.

However, the centralized Bayesian filtering approach is impractical for extensive
networks due to two major limitations: the dependence on a single central computing
unit creates a potential point of failure, and the computational complexity increases
cubically with the number of agents and passive objects [10]. To overcome such
limitations, distributed or consensus-based Bayesian filtering algorithms have been
studied in the past [43, 156]. Since the marginalization of the joint posterior PDF
b(st|o1:t) to compute the agents’ beliefs b

(
s

(A)
i,t |o1:t

)
can be unfeasible or extremely

complex, the distributed Bayesian filtering adopts a MPA. This approach approximates
the agents’ beliefs with an iterative message passing procedure over a factor graph which
factorizes the joint posterior PDF. As an example, indicating the beliefs of agent i at
timestep t and message passing iteration p ∈ {1, . . . , NMP} with b

(p)
i,t = b(p)

(
s

(A)
i,t |o1:t

)
,

the MPA-based CP (without the presence of targets) executes the subsequent steps in
parallel for each agent.

1. Prediction message: The message representing the predicted state of agent i:

µi,
−→
t

(
s

(A)
i,t

)
∝

∫
p(s(A)

i,t |s
(A)
i,t−1) b

(NMP)
i,t−1 ds

(A)
i,t−1 , (2.34)
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where b
(NMP)
i,t−1 is the belief estimated by agent i at previous time t − 1 after NMP

message passing steps. We mention that the beliefs are instantiated at time t = 0
as b

(NMP)
i,0 ≜ p

(
s

(A)
i,0

)
.

2. Beliefs exchange: At iteration p ∈ {1, . . . , NMP}, each agent i transmits b
(p−1)
i,t

and receives b
(p−1)
j,t from its neighbors j ∈ Ni,n. At p = 1, the shared beliefs are

b
(0)
i,t = µi,

−→
t

(
s

(A)
i,t

)
.

3. Measurement messages computation: During message passing iteration p ∈
{1, . . . , NMP}, each agent i computes one message for each observation typol-
ogy:

µ
(p)(GNSS)
i,t

(
s

(A)
i,t

)
≜ p

(
o

(GNSS)
i,t |s(A)

i,t

)
, (2.35)

µ
(p)(A2A)
j→i,t

(
s

(A)
i,t

)
∝

∫
p

(
o

(A2A)
j,i,t |s

(A)
j,t , s

(A)
i,t

)
b

(p−1)
j,t ds

(A)
j,t

∀j ∈ Ni,n. (2.36)

4. Beliefs update: At message passing iteration p ∈ {1, . . . , NMP}, the beliefs are
updated as:

b
(p)
i,t ∝ µi,

−→
t

(
s

(A)
i,t

)
µ

(p)(GNSS)
i,t

(
s

(A)
i,t

) ∏
j∈Ni,n

µ
(p)(A2A)
j→i,t

(
s

(A)
i,t

)
. (2.37)

5. State inference: At last, after completing NMP message passing steps, the agent
state is determined using the MMSE estimator as:

ŝ
(A)
i,t = E

si,t∼ b
(p)
i,t

{
s(A)

i,t |o1:t

}
. (2.38)

Step 1), known as the prediction step, is executed once per timestep t. In contrast, steps
2), 3), and 4), referred to as update steps, use the measurements obtained from the
current timestep and they are carried out during all NMP message passing iterations for
each timestep t.

2.5.1 Discussion and Contributions
Although MPA is scalable, it has a limitation in that convergence to the centralized
solution is only assured in acyclic (i.e., tree-structured) factor graphs. Moreover, even in
case of convergence, the result would be optimal only with Gaussian and linear models
(i.e., in (2.1) and (2.3)). In all the other cases, optimality is not guaranteed. In Fig. 2.12
we summarized all cases and highlighted those where improvements could be provided
by new data-driven designs. We would like to point out that in real-world dynamics, the
factor graph is usually not acyclic and the models are typically neither Gaussian nor
linear. For improving upon MPA in conditions where the optimality is not guaranteed,
in Papers [J2] and [J3], we proposed MPNN-based solutions for the specific tasks of DA
and CP, respectively. On the contrary, for ICP frameworks, in Papers [C8] and [J9], we
proposed a novel MARL algorithm that generalizes the Bayesian-filtering approach by
including actions of agents for de/activating communications links.
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Inference in Agent Networks

In this chapter, we summarize the main concepts and methodologies adopted for perform-
ing cooperative inference in agent networks. The application focuses on next-generation
cellular networks (see Fig. 1.1d), where the agents are represented by BSs. We start
by describing, in Sec. 3.1, the system model adopted between the BSs and the UE.
Then, in Sec. 3.2, we report the extraction of the proposed fingerprinting measurement
for performing positioning, whereas in Sec. 3.3 we describe the main DL model for
channel compression into a latent features representation. Finally, in Sec. 3.4, we
discuss the main concept of VI and its application to the anomaly detection task for
NLoS identification.
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(a) Uplink scenario (b) UE trajectories

Figure 3.1: Representation of the cooperative inference system model: (a) BS receiving the uplink signal
from the UE through an UPA, with highlighted AoA of the 1-st path composed by the zenith angle θze

1
and the azimuth angle φaz

1 , and (b) example of two UE trajectories in the area of Cambridge, MA,
USA with red triangles indicating the BS positions.

3.1 System Model
We consider a mmWave OFDM system where a UE transmits to BS at a carrier wave-
length λc. The BS is fitted with a uniform planar array (UPA) consisting of Nv × Nh
isotropic antenna elements, in the vertical and horizontal direction, respectively, with
vertical and horizontal antenna spacings of dv and dh, respectively. In contrast, the UE
is provided with a single omni-directional antenna. The channel involves Np distinct
propagation paths, where each path p = 1, . . . , Np is characterized by an AoA, specified
by a zenith angle θze

p ∈ [0, π] and an azimuth angle φaz
p ∈ [0, π], and by a ToF τp. The

scenario is represented in Fig. 3.1 where we reported the UPA at the BS receiving
two paths (one direct and one reflected) (a) and the corresponding BSs locations and
UE trajectories (b). In the example, the BSs disposition has been chosen according
to the 3GPP urban micro (UMi) scenario [157] within a 1000 × 1000 m area near the
MIT campus in Cambridge, MA, USA. The setting includes 19 sites, each with an
inter-site distance (ISD) of 200 m, forming a hexagonal layout. Each site comprises 3
BSs, elevated 25 m and angled 120 degrees apart.

The system adopts an OFDM scheme with a sampling interval of length Ts, Nc
sub-carriers, and an OFDM symbol duration of Tc = NcTs. Considering baseband
formulation, the frequency at the k-th sub-carrier is fk = k

Tc
, k = 0, . . . , Nc − 1. We

indicate with Ng the number of sampling intervals constituting a guard interval and we
assume that the maximum channel delay τMAX is lower than the cyclic-prefix duration
Tg = NgTs.

By considering a sampling rate of 1/Ts and treating each path as wide-sense stationary
and independent [158], we can express the CFR at the k-th sub-carrier as [159, 160]:

hch
k =

Np∑
p=1
ᾱk,p e(θze

p ,φaz
p ) ∈ CNhNv , (3.1)
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e(θze
p ,φaz

p ) ∈ CNhNv is the array response vector [158], and ᾱk,p = αpe−j2πτpfk are the

frequency channel gains, with αp = ape−j2π( dp
λc

−νpτp) being the complex gain of p-th path
which includes the Doppler frequency shift νp and has average power σ2

p = E{∥ap∥2}.
The traveled distance of the p-th path is indicated with dp = c τp, where c is the speed of
light in air. By grouping the CFRs at every sub-carrier, we recover the space-frequency
channel response matrix (SFCRM):

Hch = [hch
0 hch

1 . . . hch
Nc−1] ∈ CNhNv×Nc . (3.2)

In the following, we show how to extract the ADCPM fingerprint from the SFCRM
obtained at the BS.

3.2 Location-dependent Fingerprint
Mapping the channel response into the angle-delay domain is beneficial for location
estimation as it simplifies the process of identifying macro-paths, which include clusters
of both LoS and NLoS components. These clusters vary based on the surrounding
environment and act as distinctive location-specific features or fingerprints. Furthermore,
the estimation’s robustness and accuracy are enhanced by increasing the number of
antenna elements and the bandwidth, which improves resolution in both the spatial and
frequency dimensions. We obtain the angle-delay domain features by defining the phase-
shifted discrete Fourier transform (DFT) matrices V Nh ∈ CNh×Nh and V Nv ∈ CNv×Nv ,

where [V Nh ]̄i,j̄ = 1√
Nh

e
−j2π

ī(j̄−
Nh
2 )

Nh and [V Nv ]̄i,j̄ = 1√
Nv

e−j2π
ī(j̄− Nv

2 )
Nv , and the unitary

DFT matrix F ∈ CNc×Ng , with [F ]̄i,j̄ = 1√
Nc

e−j2π īj̄
Nc . We can therefore obtain the

angle-delay channel response matrix (ADCRM) as [102]:

G = 1√
NhNvNc

(V H
Nh
⊗ V H

Nv)Hch F ∗ ∈ CNhNv×Ng , (3.3)

where (V H
Nh
⊗ V H

Nv) and F ∗ project the SFCRM into the angle and delay domain,
respectively.

Finally, the ADCPM is computed from the ADCRM as:

P = E{G⊙ G∗} ∈ RNhNv×Ng , (3.4)

where [P ]̄i,j̄ = E
{∥∥∥[G]̄i,j̄

∥∥∥2
}

. We would like to point out that whenever the angle-delay

resolutions is very high, in the limit for Ng, Nv and Nh → ∞, the ADCPM becomes
sparse and its elements [P ]̄i,j̄ match the average channel power of the ī-th AoA and the
j̄-th ToF as [102]:

lim
Nh,Nv,Ng→∞

[P ]̄i,j̄ =
Np∑
p=1

σ2
p δ

[̄
i−mpNv − np

]
δ

[
j̄ − rp

]
, (3.5)

where mp = Nh
2 + Nhdh

λc
sin θze

p cosφaz
p , np = Nv

2 + Nvdv
λc

cos θze
p , and rp = ⌊ τp

Ts
⌋ is the

resolvable delay corresponding to the p-th path. Consequently, the statistical charac-
teristics of the ADCPM enhance the DL model’s capability to detect location-specific
attributes, offering consistent and reliable fingerprints for accurate location estimation.
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3.3 Input and DL Model
We suggest employing the ADCPM as the fundamental measurement for estimating
the UE location. This sparse matrix effectively represents the multipath environment
in the power-delay-angle domain, enabling a DL model like a CNN to identify crucial
location-centric features. Notably, the initial, often sparse, layers of the CNN are suitable
for extracting highly discriminative features from the sparse ADCPM channel matrix
[161]. Additionally, the ADCPM encapsulates critical information including RSS, AoA,
and ToF for each path, while keeping memory and computational demands minimal due
to the channel’s sparsity. To represent this characteristic, Fig. 3.2a presents an example
of ADCPM with Ng = 352 delay samples and NhNv = 64 angular directions. Figs.
3.2b and 3.2c display the ray-tracing paths along with their azimuth and zenith AoA,
which produced the ADCPM fingerprint. Notably, the matrix’s sparsity remains clear
even without a large array of antennas or high-resolution sampling. In our simulations
for inference in next-generation cellular networks, we thus use the ADCPM P as the
input x for the DL model, serving as the basis for positioning and subsequent tracking.

Given the high-dimensionality of the ADCPM input, it is natural to try compressing
it to a more compact representation that is absent of redundant information. One of
the most popular and effective DL models to perform this operation is the AE, trained
to reconstruct the input ADCPM matrix with minimal loss, capturing the most critical
features in the compressed domain. The way the AE is trained, i.e., how to tune the
parameters to obtain predetermined latent features h, highly relies on the typology of the
task (e.g., unsupervised, semi-supervised, and supervised ML). After compressing the
input into the latent features h, several downstream tasks become feasible. For instance,
we may want to estimate their PDF, assess the likelihood of observing a predetermined
input, or use them as input to subsequent models.

3.4 Efficient Distribution Modelling with Variational In-
ference

Let’s define the encoder and decoder parts as pϕ(h|x) and pθ(x|h), parameterized by
the non-random parameters ϕ and θ, respectively. The objective is to approximate an
intractable posterior PDF pθ(h|x), from which the latent features are sampled given an
input x, with the variational approximation pϕ(h|x). For this reason, this method is
called VI. We make the hypothesis that the latent features h have a prior distribution
pθ(h), also considered intractable, and that the PDFs pθ(h|x) and pθ(h) are differen-
tiable with respect to h. To approximate the intractable posterior PDF pθ(h|x), we
estimate the parameters θ and ϕ by MLE. Given an input x, the log-likelihood function
of the parameters can be expressed as:

log pθ(x) = log
∫

pθ(h,x)dh

= log
∫

pϕ(h|x) pθ(h,x)
pϕ(h|x) dh

≥
∫

pϕ(h|x) log
pθ(h)pθ(x|h)

pϕ(h|x) dh (3.6)
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Figure 3.2: (a) Example of the ADCPM fingerprint with NhNv = 64 spatial samples (i.e., angle indexes)
and Ng = 352 temporal samples (i.e., delay indexes). The corresponding azimuth and zenith angles
for each of the two main clusters of arrives are represented in (b) and (c), respectively.

= Eh∼ pϕ(h|x)

{
log pθ(x|h)

}
− KL

(
pϕ(h|x)

∥∥∥ pθ(h)
)
, (3.7)

where the inequalities in (3.6) derives from the Jensen’s inequality and KL(·∥·) is the
Kullback-Leibler (KL) divergence. It should be noted that the first term in (3.7) repre-
sents the expected log-likelihood, which encourages the model to accurately reconstruct
the input samples from the latent representation. Conversely, the KL divergence term
serves as a regularizer, pushing the learned latent distribution to approximate the prior
distribution. Equation (3.7) is used as objective function to be maximized in VAE meth-
ods [162], where the aim is to learn a compressed representation of the latent features
by imposing a Gaussian prior PDF in pθ(h). This is very useful for anomaly detection
tasks, where we want to learn the most precise representation of normal samples, such
as to distinguish them from anomalous samples. However, the main drawback with VAE
is that they approximate the integral in (3.6) by using MC sampling, both in the training
and testing phases. Thus, they have important limitations in real-time applications.

To avoid explicit sampling, many works adopted a conventional AE for compressing
the input and then a probability density estimate to approximate the real latent feature
distribution. An example is the KDE method [163], that, given a set of training samples
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{hj}Ns
j=1 from p(h) and a test sample hi, returns the probability density estimate as:

K
(
hi|{hj}Ns

j=1

)
= 1

Ns

Ns∑
j=1

kbw(hi − hj), (3.8)

where kbw : Rm → R is a kernel function with bandwidth bw, with m being the latent
dimension. However, the main issue with an AE-KDE architecture is that we need to
store all the training datasets (i.e., related latent feature samples) to estimate the density
function in the inference phase. An alternative, employed in [91], is to adopt a DAGMM
to simultaneously optimize the AE weights, and the latent distribution by means of a
GMM, whose parameters (i.e., means µ̂k, covariances Σ̂k, and mixture coefficients ϕ̂k)
are computed with an estimation NN. The estimation network is trained by minimizing
the sample energy, i.e., negative log-likelihood as:

JE(h) = −log

 NK∑
k=1

ϕ̂k exp
(
−1

2(h− µ̂k)⊤Σ̂
−1
k (h− µ̂k)

) 1√
det

(
2πΣ̂k

)
 , (3.9)

where NK is the number of components. With the GMM we are able to approximate
the latent distribution with the most important components, thus avoiding an inefficient
storing of training samples.

3.4.1 Discussion and Contributions
Even though the GMM approximation is simple and efficient, it may not be suitable to
approximate complex distributions that exhibit multimodality, heavy tails, or intricate
structures, as the KDE can. For example, when dealing with high-dimensional data or
distributions with a large number of modes that are not well-separated, GMMs may
require an impractically large number of components to achieve a good approximation,
which increases computational complexity [164]. Moreover, GMMs assume that each
component follows a Gaussian distribution, which may not capture the true nature of
the underlying data if it significantly deviates from Gaussianity [165]. In contrast, KDE
provides an estimation that adapts to the actual data distribution without assuming a
specific parametric form [163]. Fig. 3.3 illustrates this comparison, highlighting how
KDE can capture more intricate structures in data. For example, as noted in [166],
real-world data may lack a clear predefined distribution and exhibit arbitrary patterns
in latent space, posing challenges for GMM-based methods. Additionally, GMMs
often require manual parameter adjustments when modeling the density distribution of
input data, which can significantly impact detection performance. To show an example
of realistic high-dimensional data, in Fig. 3.4, we report the t-distributed stochastic
neighbor embedding (t-SNE) visualization of the ADCPM fingerprint and the related
density estimation. Note that despite using many components (12 in this case), the
GMM is not able to approximate precisely shapes that are not strictly Gaussian or that
exhibit complex structures.

Despite the authors in [91] did not employed a VI-based objective function for
training DAGMM, the negative log-likelihood function of a latent sample h can be
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Figure 3.3: Comparison between (a) the GMM and (b) the KDE techniques for estimating the density of
a two-dimensional dataset.

written as:

−log pθ(h) = −log
NK∑
k=1

pθ(k,h)

= −log
NK∑
k=1

pϕ(k|h) pθ(k,h)
pϕ(k|h)

≤ −
NK∑
k=1

pϕ(k|h) log
pθ(h)pθ(k|h)

pϕ(k|h)

⋍ JE(h) + KL
(
pϕ(k|h)

∥∥∥ pθ(k|h)
)
, (3.10)

where the approximation in (3.10) comes from JE(h) ⋍ Ek ∼ pϕ(k|h)

{
−log pθ(h|k)

}
,

and where pϕ(k|h) is the estimation NN that predicts the parameters of the k-th Gaussian
component. Note the similarity between (3.7) and (3.10), where the input sample
x now becomes the latent feature h. Inspired by (3.10) and to improve the GMM
approximation, in Paper [J10], we propose an AE-based model for NLoS identification
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Figure 3.4: (a) 2D visualization of the ADCPM samples (LoS and NLoS) obtained with t-SNE dimension-
ality reduction method. (b) and (c) are the corresponding density estimations for the LoS distribution
with GMM and KDE algorithms, respectively.

where the channel latent features are learned through a KDE only at training time and
just exploiting the previous mini-batch, as opposed to the whole dataset. The estimation
NN of DAGMM is replaced by a likelihood NN which directly approximates the KDE’s
output. At inference time, the decoder, as well as the KDE, are discarded, leaving the
anomaly score prediction to the likelihood NN.
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Graph-aware Learning

In this chapter, we present two works that perform cooperative learning directly on
graphs. Specifically, within the framework of vehicular networks, we propose the
integration and employment of MPNN into C-ML systems for the tasks of DA and
CP. In the first paper, the objective is to associate measurements obtained with lidar
object detection models at different vehicles. To tackle the problem, we present a
logical graph mapping based on the measurements, i.e., detections, and the vehicles’
positions. We then associate different measurements by means of a modified MPNN
model trained on edge-classification task on the logical graph. Finally, we compare the
performances of the proposed approach with MPA-based algorithms under different
noise conditions and graph dimensions. In the second paper, the objective becomes
performing CP in a distributed network of agents that move in the space and gather
state and inter-agent measurements at each timestep. Inspired by the MPA for CP, we
propose a two-block model, namely LSTM-MPNN, that employs the LSTM for next
state prediction and the MPNN for measurements processing and state update. The
results indicate that the developed LSTM-MPNN model surpasses the corresponding
MPA in CP in both complexity and accuracy. This improvement is achieved by directly
learning the state-transition PDF and the distributed state-update from trajectory data.
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Cooperative Lidar Sensing for Pedestrian Detection:
Data Association Based on Message Passing

Neural Networks
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Abstract—This paper considers the problem of cooperative
lidar sensing in vehicular networks. We focus on the task of
associating the vehicle-generated measurements by lidars to
enable a cooperative detection of vulnerable road users. The
considered measurements are the three-dimensional bounding
boxes extracted from the lidar point cloud. Focusing on a
centralized architecture which aggregates and processes all the
sensing information, we design a graph formulation of the
association problem and we propose a novel solution based
on Message Passing Neural Networks (MPNNs). The method
has the advantage of accurately learning the associations and
the measurement statistics directly from data. We validate the
proposed approach on a cooperative sensing scenario simulated
by CARLA, an open-source high-fidelity simulator for automated
driving scenarios. For the generation of bounding boxes related to
pedestrian detections, we consider both artificially-generated and
realistic measurements obtained by employing the PointPillars
model. We validate the performance by comparing the proposed
MPNN model with the Sum-Product Algorithm for Data Asso-
ciation (SPADA), a common approach for data association in
multisensor systems. The proposed data-driven MPNN model
achieves an association accuracy above 99% and outperforms
SPADA in case of moderate sensing errors, as foreseen by
automated driving scenarios. We also assess the efficacy of data
association in case of mis-modeling between training and testing
datasets, observing good generalization capabilities when dealing
with untrained conditions.
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association, MPNN, SPADA, CARLA simulator.
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I. INTRODUCTION

A. Contextualization and Background

IN the last two decades, driving automation functionalities
have advanced at an incredible rate, allowing an accurate

perception of the environment for enhancing vehicle safety [1],
[2]. At the same time, the development of cellular communica-
tions for the automotive vertical (e.g., 5G and beyond) is driving
a new connectivity paradigm for mobility [3], [4], [5]. Vehicle-
to-Everything (V2X) communications enable a seamless infor-
mation sharing among vehicles, road infrastructures and any
other road entity over Vehicle-to-Vehicle (V2V) or Vehicle-
to-Infrastructure (V2I) links. Examples of exchanged informa-
tion in V2X networks include sensor data, driving intents and
planned trajectories, or safety-related messages [6]. Moreover,
V2X communications allow to extend the ego-sensing capabil-
ities beyond the immediate field of view of on-board sensors,
enabling the cooperation across sensing systems of different
vehicles. The aggregation of data from spatially distributed
sensors (both on vehicles and road infrastructure) through V2X
links fosters the deployment of the so called Cooperative Local-
ization (CL) systems [7], [8], [9], [10], [11], [12]. A relevant use
case for CL in V2X networks is related to Vulnerable Road User
(VRU) detection [13], [14], where cooperation can significantly
improve the detection capability.

Regardless of whether these sensors are located in the same
vehicle [15], [16] or across different units [17], [18], [19],
CL heavily relies on the correct association of sensor mea-
surements, i.e., data association [20], [21], [22]. While data
association may appear as a simple task, numerous studies have
emphasized the importance of addressing this problem due to
the limitations of naive solutions that simply associate closely
detected objects [23], [24], [25], [26]. These solutions only
yield meaningful results if all vehicles detect an identical num-
ber of objects, which is an unrealistic assumption due to varying
sensor hardware and fields of view, and do not have false alarms
due to clutter. Consequently, it is essential to associate multiple
sets of measurements related to distinct detected objects that are
only partially in common among vehicles.

In the literature, classical approaches for data association
were developed for solving the Multiple Object Tracking
(MOT) problem, with the ultimate goal of estimating the
trajectories of unknown and time-varyingobjects. Differently

This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/
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from the localization of active devices, passive targets pro-
duce unknown measurement-to-target connections, which have
to be associated before running any CL algorithm. The fu-
sion of multiple sensors’ measurements can take place under
centralized [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], distributed [37], [38], [39], [40], [41], [42] or hybrid
network architectures [43], [44].

In this paper, we focus on a centralized solution in V2X
networks where a central processing unit is in charge of
combining the raw data (or derived characteristics) from all
connected vehicles. Specifically, the aggregated measurements
refer to bounding boxes extracted from lidar sensors at the
vehicles. Centralized solutions in the literature mainly rely on
probability-based methods such as Belief Propagation (BP),
also known as Sum-Product Algorithm (SPA), which gives a
systematic approximation of optimal Bayesian inference with
an appealing performance-complexity trade-off [45]. BP uses
an iterative message passing exchange of information over a
suitable graph characterizing the specific problem. BP-based
techniques are optimal in case of linear and Gaussian models,
but provide only an approximation in case of loopy graphs
or statistical distributions arising from real systems [21], [22].
Differently from BP-based solutions, we here propose to use
Message Passing Neural Networks (MPNNs), that allow to im-
prove performances upon SPA by directly learning the correct
associations and noise distributions from data.

B. Related Works

First works of MOT task were developed in the domain of
radar and sonar tracking [30], [31], [32], [33], [34]. Traditional
MOT methods, such as Joint Probabilistic Data Association
(JPDA) [46], Linear Joint Integrated PDA (LJIPDA) [47] and
Multiple Hypothesis Tracker (MHT) [48], assume that the
number of targets is known and jointly estimate the target
states and association variables. These approaches have been
later extended to consider also multi-sensor scenarios [49],
[50] as in Linear Multitarget IPDA (LMIPDA) [51]. Recent
studies, including probability hypothesis density (PHD) filters
[52], [53], adopt finite set statistics to predict the number
of targets and target states without directly estimating the
association variables. Other studies addressing probabilistic
data association can be found in [54], [55], [56], [57], [58],
[59]. However, most MOT approaches have limited scalability
as the number of sensors and targets grows. Improvements
from this point of view have been introduced by BP techniques
that are able to achieve high scalability [45]. BP approaches
have been investigated for both centralized [27], [28], [29],
[36] and distributed [37], [38] solutions.

As far as the data association is concerned, one of the most
prevalent approach is to use a graph formulation, which fa-
cilitates the description of relationships among multiple mea-
surements on a same set of detected targets. Many solutions
that use graphs to solve data association take into account all
feasible assignments at the same time, yielding to an NP-hard
combinatorial problem [60], [61]. To reduce the complexity,
sub-optimal (greedy) methods have been proposed, casting the
problem as a linear one and addressing it through minimum-
cost [62] and maximum-flow algorithms [63]. These methods,

however, do not guarantee satisfying performance, especially in
cluttered and occluded environments [64], [65].

Another possibility to successfully manage data associa-
tion is to build Machine Learning (ML) models that directly
learn from data. ML, and in particular Deep Neural Networks
(DNNs), have been embedded inside graphs thanks to the rise
in popularity of Graph Neural Networks (GNNs) [66], [67].
GNNs, and more specifically MPNNs, inherit the message pass-
ing structure of SPA to produce the desired output from a set
of inputs. Indeed, they have been jointly used with the SPA to
improve the overall performances by correcting errors created
by cycles and model mismatch [68], [69]. Compared to DNNs,
MPNNs have fewer parameters but they can still catch the linear
and non-linear relationships between input data and output,
being at the same time scalable [70]. Moreover, MPNNs have
been shown to outperform BP on loopy graphs, provided that
enough training data is available [71].

C. Contribution

To the best of our knowledge, GNNs have never been ex-
plored for cooperative sensing nor for vehicular networks.
Drawing inspiration from [72], where the detections obtained
by a single camera system were associated over consecutive
time frames, we here modify and extend the approach to a coop-
erative (i.e., multi-vehicle) scenario. We consider a centralized
network of vehicles, each with a single lidar sensor, with over-
lapped Field-of-Views (FOVs) allowing a cooperative detection
(at the same time instant) of pedestrians through the associa-
tion of multiple bounding boxes extracted from the lidar point
cloud. We selected pedestrians as they are passive elements of
the environment and are extremely relevant for safety-related
applications (e.g., vulnerable road user protection) as well as
they are popularly present in urban areas. Alternatively, vehicles
could also be used, but they are typically equipped with active
devices in Cooperative Intelligent Transport Systems (C-ITS)
(following V2X paradigms), thus notifying their presence in
the near surroundings. On the other hand, passive targets, such
as pedestrians, traffic signals or poles [73], are not univocally
identified and, therefore, data association is needed for their
recognition and cooperative detection by multiple sensors.

We assume that the lidar detection system does not incur false
detections (i.e., incorrect bounding boxes), which would require
a tracking over time to resolve the ambiguity; here we focus
on a snapshot-based data association. This assumption may not
always hold in real-world scenarios, especially when objects
are partially occluded. However, we employ a filtering strategy
that is widely adopted in deep learning object tracking and
discards unlikely bounding boxes with low detection confidence
(see e.g., [74] for a more complete discussion). This helps
limiting the false positives as very unlikely bounding boxes are
automatically removed by the detector1. We also assume the
noise statistics as invariant across all sensors, a condition which
in practice might not be fulfilled due todifferent hardware and

1Complete removal of false positives may be accomplished by not only tak-
ing into account the detection confidence but also the temporal dependencies
of detections across adjacent time instants. This extension, not considered
here, requires solving the data association problem over multiple graphs
relating to adjacent time instants.
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lidar processing techniques. Including the variation over time of
uncertainties and designing an MPNN-based tracker with data
association are non-trivial issues that require deeper research
relying on this first activity as a starting point.

We propose an ML approach based on GNNs that exploits
the availability of training data, today largely accessible in
most applications. In particular, we address the data association
problem through MPNNs in a V2X network where vehicles
share the detections of lidar sensors in a common infrastructure
(e.g., cloud-based). We choose to focus on data association
using MPNNs for two main reasons. First, data association
is a crucial component in cooperative sensing algorithms, as
accurate assignment of detections to tracks significantly im-
pacts the tracking performance: our goal is to provide a solid
foundation for more robust tracking solutions. Second, using
MPNNs for data association is an innovative approach with
great potentials for learning complex relationships in graph-
structured data, providing valuable insights and future research
opportunities.

A preliminary version of the proposed method has been
presented in [75], where we developed a unique graph represen-
tation of the data association problem which is handled by an
MPNN model that captures the measurements’ characteristics
and produces a compact and effective feature representation.
While in [75] we focused on a simple proof-of-work imple-
mentation and stand-alone validation in a vehicular scenario,
in this paper we extend the work with the main following
contributions:

• proposal of MPNNs models for the cooperative association
of 3D bounding boxes from lidar sensing in vehicular
networks;

• analysis of the generalization capabilities of the MPNN
association model over a number of different and realistic
measurement statistics;

• validation of the suggested approach in a realistic cooper-
ative vehicular environment simulated with CARLA [76]
where a central unit fuses the bounding boxes obtained
by multiple vehicles from on-board lidar data using the
PointPillars [77] model;

• comparison with the conventional Sum-Product Algorithm
for Data Association (SPADA) [21], [22], with particu-
lar focus on association performances and generalization
properties.

Note that the assessment on a synthetic cooperative dataset
considers the use of an efficient 3D object detector, which has
been demonstrated to provide accurate performances in chal-
lenging real-world datasets [77]. Since the primary focus of this
work is on the fusion over the V2X networks of bounding boxes
from multiple vehicles and not on the processing of raw lidar
point clouds, any signal losses or adverse weather conditions
are not affecting the proposed MPNN as they only reduce the
performance of the 3D object detector operating over the lidar
point cloud.

Numerical results show that the proposed method is able
to efficiently address the data association issue in coopera-
tive connected multi-vehicle systems, and to correctly learn
extremely complex (e.g., multi-modal) distributions, such as

the realistic PointPillars outputs. Moreover, with respect to
SPADA, the proposed MPNN model can achieve higher perfor-
mances across different noise statistics and intensities in several
circumstances.

D. Paper Organization

This paper is organized as follows: Section II introduces the
system model of the cooperative sensing scenario and its graph
representation. Section III firstly provides an introduction on
the working principle of GNNs, and then defines the proposed
MPNN solution. Section IV is devoted to performance analysis
in a cooperative vehicular scenario with lidar-based pedestrian
detection and to the comparison with SPADA. Finally, Sec-
tion V draws the conclusion.

II. SYSTEM MODEL

Let us denote with Sn = {1, ..., Sn} a set of connected ve-
hicles at time n. A vehicle s ∈ Sn is described by the state
vector xs,n, which can include kinematic (e.g., position, veloc-
ity, etc.) and non-kinematic (e.g., identification number, cate-
gory, dimension, etc.) parameters. All vehicles are connected
to a central processing unit (e.g., a road side unit or a mobile
edge cloud) in charge of aggregating the vehicle-generated in-
formation and providing a cooperative detection system. We
assume an always-available connectivity: model and effects of
the communication protocol are out of the scopes of this paper.
Each vehicle has a lidar sensing system embedding an ML algo-
rithm for detecting non-cooperative vulnerable road users, here
pedestrians, referred to as targets. The k-th target is described
by the state vector yk,n, while the set Ys,n includes all the
pedestrians detectable by vehicle s (i.e., within its FOV) at time
n. By processing the lidar point clouds gathered at the vehicles
via 3D object detection methods, such as [78], [79], each target
falling within the lidar sensing range can be recognized and
represented by a bounding box encoding its location, extension
and rotation. Each target is assumed to generate at most one
bounding box at a vehicle per each time step. This assumption,
known as “data association assumption” [80], is common in ob-
ject detection models for lidar point clouds, and more in general
in MOT algorithms, as it helps to simplify the detection and
tracking process, reduce ambiguities, and improve the overall
tracking performance. The m-th bounding box at vehicle s at
time n is zs

m,n and the associated target is unknown. As such,
at time n, a sensor has a set of unpaired (to the originating
target) bounding boxes zs

n = {zs
1,n · · · zs

M,n}. Note that the set
zs

n could even be empty. The union set of all bounding boxes
of all vehicles at time n is Zn =

⋃Sn

s=1 zs
n.

To visualize the considered vehicular scenario, in Fig. 1(a) we
report the case of two vehicles, x1,n and x2,n, jointly detecting
two pedestrians, y1,n and y2,n, through the bounding boxes
z1

n = {z1
1,n z1

2,n} and z2
n = {z2

1,n z2
2,n} for vehicles s = 1 and

s = 2, respectively. The measurement zs
m,n is described by the

3D coordinates of its eight corners, i.e., zs
m,n =

[
zs

i,m,n

]8
i=1

, as
shown in Fig. 1(b), which take into account the overall footprint
and orientation of the target. To correctly associate the bounding
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Fig. 1. (a) Cooperative scenario with two vehicles x1 and x2 detecting
pedestrians y1 and y2 by means of lidar technology. (b) Bounding boxes
extracted from the lidar point cloud with corner definition. The subscript n
is removed for visualization purposes.

boxes, an absolute (fixed) Cartesian spatial reference system has
to be used for the identification of the corners. In this case, we
choose to label as zs

1,m,n the bottom-north-est corner and zs
8,m,n

the top-south-west one.
In the proposed GNN solution, the union set Zn is mod-

eled as a direct graph G = (V, E), where each node i ∈ V
corresponds to a single measurement, while the edge (i, j), with
i �= j, indicates a candidate association. To univocally map the
node i ∈ V with the measurement m of vehicle s at time
n, we define the mapping function Φn : V → Zn × Sn. The
function Φn(i) = {m, s} cannot inherently prevent the asso-
ciation of two distinct measurements of a same vehicle. For
this reason, we also introduce the association-related variable
yi→j ∈ {0, 1} which denotes the presence/absence of the edge
(i, j), i.e., the two bounding boxes embodied in nodes i and j
refer to a same target. The goal of the data association algorithm
(here addressed with MPNN) is to estimate the association
variable ŷi→j ∈ {0, 1} by considering all possible pairings of
bounding boxes, with the constraint of ŷi→j = 0 if the mappings
Φn(i) and Φn(j) refer to a same vehicle s.

TABLE I
SUMMARY TABLE OF NOTATION

Description Symbol

Set of vehicles at time n Sn

State of vehicle s at time n xs,n

Set of detectable targets by vehicle s at time
n

Ys,n

State of target k at time n yk,n

Set of bounding boxes of all vehicles at time
n

Zn

Set of bounding boxes of vehicle s at time n zs
n

m-th bounding box of vehicle s at time n

described by the coordinates of its corners zs
m,n =

[
zs

i,m,n

]8

i=1
GNN directed graph with vertex and edges G = (V, E)
Mapping function from node i ∈ V to
measurement m of vehicle s at time n Φn : V → Zn × Sn

Association-related variable yi→j ∈ {0, 1}

As an example of graph construction, we refer to the ve-
hicular scenario shown in Fig. 2(a) where vehicle x2,n detects
only y1,n through measurement z2

1,n, while the other two ve-
hicles x1,n and x3,n can detect both targets y1,n and y2,n,
respectively. It follows that the graph with true measurements
association for such scenario is the one indicated in Fig. 2(b),
which has to be reconstructed from the fully-connected graph
in Fig. 2(c) that includes all possible pairings. In next section,
we detail the proposed algorithm for estimating the connections
from all possible associations, i.e., how to get the graph in Fig.
2(b) from the one in Fig. 2(c).

A summary of the main notation variables introduced in this
section and their description is provided in Table I.

III. ADDRESSING DATA ASSOCIATION WITH MPNN

In this section, we first introduce the general concept of GNN
and more specifically MPNN (Section III-A), which is the base
for the proposed model. Then, we define the proposed MPNN
model with an insight on possible classification strategies. Fi-
nally, we describe the loss function used to train the model, as
well as the performance metrics.

A. Introduction to GNNs

Neural networks acting on graphs have been investigated
for more than a decade, being originally referred to as GNNs
[66], [67] and successively extended to many variants such
as MPNNs [81]. A complete generalization of GNNs is for-
mulated in [82] under the name of Graph Networks (GNs).
Models in this ML family have been studied in supervised,
semi-supervised, unsupervised, and reinforcement learning
contexts across a wide range of problem domains. They have
been used to learn the dynamics of physical systems [83],
predict the chemical properties of molecules [84], optimize the
communication in multi-agent networks [85], or even employed
in machine translation [86]. A further domain of applications
includes vehicular environments, where GNN are used to pre-
dict road traffic [87], [88] or classify and segment 3D meshes
and point clouds [89].

We here consider an MPNN that iteratively performs a mes-
sage passing procedure over a graph G. Iterations are indexed
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Fig. 2. (a) Top view of an exemplary cooperative localization scenario with three vehicles detecting one or two pedestrians each. (b) Virtual graph representing
the pairings measurement at multiple vehicles. Each subgraph includes all measurements of a same target. (c) Graph with unknown associations among all
measurements. Each edge embodies a potential association, which has to be probabilistically computed to get the result in (b). The color of nodes refers to
the color of originating vehicle, while colors of edge indicate the two detected pedestrians.

with t, the maximum number of message passing steps (a design
parameter) as T , while Ni = {j ∈ V|(i, j) ∈ E} is the set
of neighbors of node i ∈ V . We also identify the so called
embeddings, i.e., attributes, of node i and edge (i, j) with
variables h

(t)
i and m

(t)
i→j , respectively.

The purpose of the MPNN is to train a function that prop-
agates information from node and edge embeddings/attributes
throughout G. The more message passing steps are performed,
the more the node and edge embeddings contain elaborated
information, just like the receptive field of a Convolutional
Neural Network (CNN). To this extent, a Neural Network (NN)
is present at each node and edge of the graph. The NN at
node is indicated with gn(·), while the one over the edge by
ge(·). Considering that gn(·) and ge(·) have the same parameters,
respectively across each node and each edge, they may be
trained on small-scale graphs before being applied to large-scale
problems.

For each iteration t = 1, . . . , T , each node i ∈ V sends the
following message to its neighbors Ni

m
(t)
i→j = ge

(
h

(t−1)
i ,h

(t−1)
j ,m

(t−1)
i→j

)
, ∀j ∈ Ni , (1)

with

h
(t)
i = gn

(
h

(t−1)
i , Φ({m(t)

j→i}j ∈ Ni
)
)

. (2)

Function Φ(·) is called aggregation function and it is invariant
to permutations of its inputs (e.g., element-wise summation,
mean, maximum). Concisely, and referring to Fig. 3, the mes-
sage m

(t)
i→j sent from node i over an edge (i, j) updates the

previously sent message m
(t−1)
i→j over the same edge with the

available attributes h
(t−1)
i and h

(t−1)
j of the involved nodes, re-

spectively. The attribute h
(t)
i is obtained by combining together

all the incoming messages at the node i, i.e., m
(t)
j→i∀j ∈ Ni

(through function Φ) and the previously available information
h

(t−1)
i (computed at previous iteration).

Fig. 3. MPNN working principle: (a) update of edge embeddings, (b) update
of node embeddings. The updated elements are in red. For each MPNN step
t, first compute the edge embeddings from node i over all edges (i.e., toward
all neighbors Ni) according to (1). Then, compute the node embeddings
depending on the previously updated edge embeddings as in (2).

B. MPNN Model for Data Association

The proposed model consists of two parts: an MPNN and an
edge classifier. The role of the MPNN is to process the input
graph G derived from the measurements of all vehicles at a
given time n, i.e., Zn. On the other hand, the edge classifier
is a binary classifier with the role of determining the pairings
of all the measurements referring to the same target, i.e., finding
the association variable ŷi→j based on association probabilities.
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As a consequence, at the output of the classifier we have a
set of multiple disjoint subgraphs (as in Fig. 2(b)), each of
them grouping all the measurements that are hypothesized to
be originated from the same target.

The MPNN model is composed of four multi-layer percep-
trons (MLPs): ge(·) at each edge and gin

n (·), gout
n (·), gn(·) at

each node. The role of MLPs ge(·) and gn(·) is to update the
edge and node embeddings, respectively, in a similar way as the
conventional MPNN in (1) and (2). On the other side, gin

n (·) and
gout

n (·) are introduced to better encode the structure of incoming
and outgoing edges. In this way, we can split the problem into
two parts and individually manage the incoming and outgoing
edges in each node.

The message passing over the graph works as follows. First,
we update the edges embeddings as in (1), while the node
embeddings are updated taking into account both the incoming
m

in,(t)
j→i and outgoing m

out,(t)
i→j edge embeddings as

h
(t)
i = gn

⎛
⎝ ∑

j ∈ Ni

m
in,(t)
j→i ,

∑

j ∈ Ni

m
out,(t)
i→j

⎞
⎠ , (3)

where m
in,(t)
j→i and m

out,(t)
i→j are defined as

m
in,(t)
j→i = gin

n

(
h

(t−1)
i ,m

(t)
j→i

)
, ∀j ∈ Ni, (4)

m
out,(t)
i→j = gout

n

(
h

(t−1)
i ,m

(t)
i→j

)
, ∀j ∈ Ni. (5)

We remark that this is done to divide the problem into two parts,
as the constructed graph for solving the data association is bi-
directed (i.e., undirected), which is common in most graphs
used by MPNNs. However, our approach also needs to ensure
the unique constraints of our data association problem, i.e., that
the association-edge between two measurements is conceptu-
ally the same in both directions.

After T message passing steps, the edge embeddings m
(T )
i→j

are fed into an MLP edge classifier gclass
e (·) which evaluates the

association probabilities ŷ
(T )
i→j as

ŷ
(T )
i→j = gclass

e

(
m

(T )
i→j

)
,∀(i, j) ∈ E . (6)

The association variables ŷi→j are then obtained with a thresh-
olding operation, with threshold Γ, to pair nodes i and j. Two
nodes are associated (i.e., two bounding boxes at distinct vehi-
cles refer to a same pedestrian) if

ŷ
(T )
i→j ≥ Γ , (7)

which implies ŷi→j � 1. However, it may happen that one mea-
surement of a vehicle is associated to multiple measurements
of another vehicle. To avoid this issue, a constraint is enforced
such that a bounding box of a vehicle can be associated to at
most one bounding box of another vehicle.

C. Loss and Performance Metrics

For computing the training loss and performing back-
propagation, we employ the weighted binary cross-entropy that

is estimated at the end of each message passing iteration t after
the edge classifier’s prediction ŷ

(t)
i→j as

L=− 1

|E|
T∑

t=1

∑

(i,j)∈E

{
(1−yi→j)log

(
1− ŷ

(t)
i→j

)

+ w yi→j log
(
ŷ
(t)
i→j

)}
, (8)

where w is a weight given to the positive class in order to
compensate the class unbalances and it is computed as

w =

∑
(i,j) ∈ E 1(yi→j = 0)

∑
(i,j) ∈ E 1(yi→j = 1)

, (9)

where 1(·) is an indicator function that returns 1 if the condition
is true and 0 otherwise. Concerning the performance metrics,
we adopt the accuracy measure defined as

Accuracy =
TP + TN

TP + FP + TN + FN
, (10)

where the terms TP, TN, FP and FN indicate the number of True
Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN), respectively.

IV. SIMULATION EXPERIMENTS

To evaluate the proposed MPNN model for data associa-
tion we consider a network of vehicles localizing pedestrians
through lidar sensing. We dedicate Section IV-A to the simula-
tion scenario and dataset, while Section IV-B reports the results
of performed simulations.

A. Simulation Scenario

Due to the unavailability of real-world cooperative percep-
tion datasets, i.e., collected by multiple and synchronous lidar-
equipped vehicles, we here employ a simulator of automated
driving systems that allows us to generate lidar readings at
multiple vehicles moving in a synthetic, yet realistic, mobility
environment. Similarly to [90], we use the CARLA simulator
[76], an extremely advanced software that integrates trajectory
planning and sensing. The considered scenario is referred to
as Town02 in the simulator, which spans over an area of
roughly 200 m × 200 m. Twenty vehicles with lidar and fifty
pedestrians populate the scene, unless otherwise specified. The
state xs,n of each vehicle refers to its 3D position. A snapshot
restricted to seven vehicles with associated point clouds of the
simulator is show in Fig. 4, where we represent the effect of co-
operative sensing by merging seven lidar point clouds. Specifi-
cally, for visualization purposes we group the vehicles into three
subgroups and we show the partial point cloud in Figs. 4(a),
4(b) and 4(c), respectively, while the cooperative perception
obtained by merging all the seven point clouds is in Fig. 4(d).

The duration of simulation is 300 s, with sampling time of
0.2 s. This results in 1500 snapshots of the scene, each one
described by vehicles and pedestrians’ positions and lidar de-
tections. A top-view image of the simulation in a fixed time
instant is shown in Fig. 5, where we include both vehicles (red
squares) and detected pedestrians (blue triangles) as well as the
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Fig. 4. Snapshot of lidar sensing simulated by CARLA: seven vehicles (red bounding boxes) detect pedestrians (green bounding boxes). (a) Partial lidar
sensing from the two vehicles in the left. (b) Partial lidar sensing from the two vehicles in the center. (c) Partial lidar sensing from three vehicles at the
bottom. (d) Cooperative sensing as a combination of seven lidar point clouds.

Fig. 5. Top-view of the simulation scenario with twenty vehicles (red
squares), detected pedestrians (blue triangles) and detections (black lines).

associated detections (black link). A vehicle s ∈ S can detect
a pedestrian k ∈ Fv,n if it falls in its field of view. All lidar
sensors are configured to run at a 5 Hz update frequency, with
an FOV of 360 deg in azimuth and [−30, +10] deg in elevation.
The number of channels supported is 64, corresponding to a
spatial resolution of 0.625 deg. The sensing range is limited
to 70 m and the number of points of the cloud cannot exceed 1
million per second. The single point has an accuracy of ±2 cm.
To simulate realistic operating conditions, 20% of the points are
randomly dropped during every simulation frame.

The ground truth information provided by the simulator in-
cludes the true positions of vehicles, i.e., xs,n, ∀s ∈ Sn, and the
true bounding boxes around the pedestrians, defined by its eight
corners, i.e., yk,n = [yi,k,n]

8
i=1. Localization errors are intro-

duced as an additive measurement error ws
i,m,n, which directly

translates over the 3D corners of the measured bounding boxes.
The resulting noisy measurement of a bounding box corner is
thus defined as:

zs
i,m,n = yi,k,n + ws

i,m,n , ∀k ∈ Ys,n, ∀i ∈ {1, . . . , 8} .
(11)

Note that the measurement error distribution is the same for all
corners, for all time instants and across all vehicles. Unless oth-
erwise specified, the artificial noise ws

i,m,n follows an isotropic
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Gaussian distribution with standard deviation σ = 10 cm. Note
that the additive noise is absent in case of using a ML model
for the automatic extraction of bounding boxes, as in the case
of PointPillars [77], since the error is embedded in the model
itself.

In the simulations, we validate the systems for a variety of
noise intensities ranging from extremely accurate detections
up to inefficient systems (errors in the order of meters) for
the considered vehicular context targeting the automation of
mobility. The former case can be considered as a condition in
which the vehicle position is assumed to be perfectly known
and the only source of error is attributed to lidar sensing and
bounding boxes extraction algorithm. The latter case, instead,
embeds both vehicle uncertainty and the errors in the generation
of bounding boxes. We do not consider separate effects as we
aim to assess the aggregated model robustness.

We divide the overall dataset into training (700 samples) and
validation (800 samples) parts, with dimensions optimized as
discussed in Section IV.B.2. Moreover, in order to assess the
generalization of the method, we increase the number of valida-
tion samples by applying a random flip along the x and y axes
of the bounding box positions, thus obtaining a total of 1600
validation samples. We remark that a sample is a snapshot of the
scene at a given time instant n and it is fully represented by the
graph of unknown measurement-pairings (Fig. 2(c)). To avoid
the computational burden of dealing with too many edges, we
introduce a gating which a-priori discards unlikely associations,
i.e., ignoring edges related to centroids whose distance is greater
than 10 m. As optimizer, we use the Adam optimizer with
tuned learning rate of 10−3 and hyper-parameters β1 = 0.9 and
β2 = 0.999 [91]. The performance metrics are computed using
the thresholding in (7) with Γ = 0.5.

B. Simulation Results

1) Initialization of Node and Edge Embeddings: To ini-
tialize the node and edge embeddings, we adopt a strategy
that learns how to extract feature embeddings directly from
measurements. This is done by using an MLP at each node
and edge, called genc

n (·) and genc
e (·), respectively. For the consid-

ered cooperative lidar sensing scenario, we use the geometric
characteristics of the bounding boxes as input to the two neural
networks to obtain m

(0)
i→j and h

(0)
i as

m
(0)
i→j = genc

e

(
zs
1,m,n − zs′

1,m′,n, zs
8,m,n − zs′

8,m′,n

)
,

∀(i, j) ∈ E : Φn(i)={m, s}∧Φn(j)={m′, s′}, s �= s′ ,
(12)

h
(0)
i = genc

n

(
zs

m,n

)
∀i ∈ V : Φn(i) = {m, s} . (13)

This allows the MPNN to discriminate not only the position
of the detected object, but also its dimension and rotation. We
find this approach to be highly effective and efficient, as it uses
a minimal amount of information for data association, limiting
the data exchange among vehicles.

Incorporating additional features, such as individual point
cloud positions, into the current feature encoding could be

TABLE II
IMPACT OF TRAINING DATASET SIZE (NUMBER OF

SAMPLES) ON ACCURACY, PRECISION

AND RECALL METRICS

# of samples Accuracy Precision Recall

16 0.869 0.852 0.859
32 0.919 0.891 0.912
64 0.972 0.953 0.980
128 0.993 0.989 0.992
300 0.999 0.998 0.998
700 0.999 0.999 0.999

beneficial and would require only modifying the encoding neu-
ral networks genc

n (·) and genc
e (·). While this could potentially

enhance performance, there are two primary drawbacks to con-
sider. First, the volume of information that would need to be
exchanged with the central entity responsible for data associa-
tion via MPNN could become unmanageable and unsustainable,
given that a lidar sensor typically outputs more than 1 million
point clouds per second. Second, increasing the number of input
features might inadvertently introduce unrelated or redundant
features that may not be beneficial or could even negatively
impact the inference process due to the multi-dimensionality
problem in machine learning.

2) Impact of Training Dataset Dimension: We first an-
alyze the impact of the training dataset size on the model’s
performance. This is crucial in determining whether the model
exhibits high or low bias. In essence, expanding the dataset size
decreases the model’s variance, meaning the residual error is
predominantly due to bias. In Table II, we present the validation
accuracy, precision, and recall after 100 epochs for varying
training dataset size. We note that by increasing the number
of samples, the model improves the performance metrics and
reaches an upper bound on the accuracy after 700 samples,
representing the best accuracy reachable by the model, i.e.,
its bias. It is noteworthy that the recall typically overcomes
the precision, implying a larger number of false positives than
false negatives. This is because the ground-truth graph retains
a predominant number of zeroed edges, thus the model is more
prone to mistake on edges that are labeled as zeros, despite the
loss function employed (8) for unbalanced classes.

3) Impact of MPNN Iterations: This assessment aims to
verify the role of the number of message passing iterations T ,
a fundamental parameter to tune the amount of information
extracted and elaborated from the data. In Fig. 6, we show
the accuracy (and associated confidence) metric in the valida-
tion dataset over the number of epochs for T = {1, 2, 4, 8, 12}.
We notice that increasing T leads to a higher accuracy and
a faster convergence, at the cost of increasing computational
complexity. However, a saturation condition occurs for T > 4,
leading us to select T = 4 as a good trade-off between accuracy,
convergence and complexity. This value will be used for the
following analyses.

4) Impact of the Measurement Statistics: This assessment
has the goal of verifying how the MPNN model handles
unobserved noises (for which it has never been trained on).
This is extremely useful in case the model is trained in a

Chapter 4. Graph-aware Learning



3036 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Fig. 6. Accuracy of the MPNN for different values of message passing
iterations T = [1, 2, 4, 8, 12] over the epochs for the validation dataset. The
mean value (solid line) is plotted together with the associated uncertainty
(shaded area) computed using the maximum and minimum values of accuracy
as boundaries.

TABLE III
DEFINITION OF MEASUREMENT NOISE DISTRIBUTIONS

Distribution fw(w)

Isotropic Gaussian (
√

2πσ2)−1exp(−0.5 σ−2w2)

Non-isotropic Gaussian (
√

det(2πΣ))−1exp(−0.5wTΣ−1w)

Laplace (
√

2σ2)−1 exp(−
√

2 σ−1|w|)

Uniform

{
0.75 (πσ3)−1, if ‖w‖2 < σ,

0, otherwise.

Discrete

⎧
⎪⎨
⎪⎩

0.4, if w = 03,

0.1, if w = {w1,w2,w3},

0, otherwise.

simulated and controlled environment, and then deployed in
real systems typically characterized by different measurement
statistics. Since there is almost no literature detailing the
error characteristics of real ML-based 3D object detectors, we
investigate the types of noise that are currently considered in
point cloud denoising algorithms. As suggested in [92], we
explore five different noise statistics: the already introduced
isotropic Gaussian, the non-isotropic Gaussian, the Laplace,
the uniform, and the discrete one, which are defined by
the distributions fw(w) � fw(ws

i,m,n) as reported in
Table III, where σ denotes the standard deviation, Σ =
σ2

[
[1, −0.5, −0.25]T, [−0.5, 1, −0.25]T, [−0.25, −0.25, 1]T

]T
,

while w1 = (±σ, 0, 0), w2 = (0, ±σ, 0) and w3 = (0, 0, ±σ).
We also implement the ML model PointPillars [77] to process

the lidar point clouds and derive the associated bounding boxes.
This method allows us to assess the performance of the MPNN
without resorting to artificially generated measurements in (11),
leading to a detection system that closely resembles practical
scenarios. By using the detections produced by PointPillars
as inputs to our data association system, we maintain a noise
distribution that mirrors realistic conditions, which is essential
for evaluating the effectiveness of the proposed MPNN-based
data association strategy in various real-world situations. The

Fig. 7. PointPillars localization error on the corners of bounding boxes
along x, y and z components. The three histograms are approximated with a
Gaussian distribution whose standard deviation is highlighted in red.

Fig. 8. Accuracy of the MPNN model (after 25 epochs) for train-
ing/validation mismatch on measurement noise.

statistics of the 3D localization error (computed as the differ-
ence between the true and estimated bounding boxes over x,
y and z axes) of PointPillars are reported in Fig. 7, showing
that they can be well approximated by a zero-mean Gaussian
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Fig. 9. Comparison on data association accuracy between (a) MPNN and (b) SPADA. For MPNN we show the accuracy (after 25 epochs) for
training/validation mismatch on measurement noise, whereas for SPADA we validate each standard deviation of the likelihood with different noise intensities.

distribution over the horizontal (x, y) space. On the other hand,
for the vertical dimension z, the model is more likely to predict
boxes in higher positions (i.e., above the road) instead of the op-
posite, so the error distribution is slightly biased. Furthermore,
we notice that the error statistics do not vary significantly over
the three axes, suggesting that they (almost) follow an isotropic
Gaussian distribution with standard deviation σ = 10 cm.

In Fig. 8 we analyze the mixed impact of training and testing
with different noise statistics. The value of σ for each noise
distribution has been set to 10 cm as closely matching the
standard deviation used for fitting the error statistics of Point-
Pillars. Analyzing the results, it is apparent that training and
validating the MPNN model on the same noise distributions
lead to optimal performances. This shows that the model is
able to obtain good accuracy regardless of the noise type, pro-
vided that the same noise is experienced for both training and
validation phases. Focusing now on the different combinations
of training/validation noises, results detail that training under
the isotropic Gaussian or Laplace noise allows the model to
generalize well over all noise types, suggesting that these distri-
butions may be employed in real-life applications where noise
statistics are not known beforehand. On the other hand, training
considering discrete and/or uniform leads to poor generalization
results during validation, most probably due to the simplistic
noise distributions compared to all other noise types. Finally,
training on realistic data, i.e., over the noise generated by
PointPillars, does not allow the MPNN to generalize well over
other distributions, particularly for Laplace and isotropic/non-
isotropic Gaussian noises.

5) Impact of the Different Scenarios and False Positives:
This experiment aims at verifying the validation performances
of the proposed model in a brand new scenario where false
positives, i.e., false alarms, are present. This allows us to
assess the robustness and adaptability of the model in more

realistic conditions, demonstrating its potential for practical
implementation.

To this purpose, in Fig. 10, we report the results of perfor-
mance validation in Town10 scenario of CARLA simulator,
where we vary the number of cooperating vehicles from 5
to 20. The proposed MPNN association strategy is evaluated
considering both the absence (Fig. 10(a)) and presence (Fig.
10(b)) of false alarms, which are obtained from the Pointpillars
detector. We would like to highlight that the model has been
trained in the map Town2 illustrated in Fig. 5 neglecting any
false positive, thus Town10 and the presence of false alarms
are unseen conditions. Starting from the scenario without false
alarms in Fig. 10(a), we note that increasing the number of
vehicles leads to better accuracy, up to a plateau around 97%,
which is just 2% below the results in the original scenario with
Pointpillars (see Fig. 8). Accounting for the false positives, we
notice in Fig. 10(b) a decrease of the accuracy to 93%. Even
more relevant is the precision which falls to 78% due to the fact
that each false positive introduces new nodes and edges in the
graph which will be associated with real detections, leading to
lower performances.

6) MPNN vs SPADA - Generalization Capabilities: This
experiment compares the performance of the proposed MPNN
association model against a conventional SPADA over different
combinations of Gaussian noise intensities used in the training
and validation datasets. For the SPADA, a training phase is not
needed, but we can embed prior knowledge on the noise inten-
sity by calibrating the standard deviation used for computing
the measurement likelihood function. To do so, we process the
training dataset and extract a single standard deviation value
that characterizes the considered noise intensity.

The comparison is reported in Fig. 9. Regarding the MPNN,
we show, for different training and validation datasets, the
validation accuracy reached after 25 epochs, while for the
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Fig. 10. Analysis of validation accuracy, precision and recall in an unseen scenario, for different number of cooperative vehicles: (a) absence of false
alarms, (b) presence of false alarms.

SPADA we represent the validation accuracy after convergence
using different a-priori noise statistics (in terms of standard
deviation). First, we can clearly observe that, in both algorithms,
the bottom-left part of the matrix has higher values of accuracy
if compared with the top-right part. This is due to the fact that,
generally, overestimating the noise (i.e., bottom-left part) leads
to a more robust model that can handle noises with lower inten-
sity. On the contrary, underestimating the noise (i.e., top-right
part) can incur into problematic situations, especially in the case
of MPNN (Fig. 9(a)). From this point of view, SPADA (Fig.
9(b)) is more solid and can better handle different noise values.
Under overestimating conditions, on the other hand, the MPNN
is able to achieve superior performances compared to SPADA,
reaching an accuracy of 99% against 97%, respectively.

7) MPNN vs SPADA - Performances on Different Noise
Statistics: This experiment has the aim of comparing the peak
or absolute performances of MPNN and SPADA in case we
have a training dataset with same statistics of the validation
dataset. Understanding the maximum performances is funda-
mental to have an upper-bound on a real deployment and to
know the learning capabilities of the algorithm/model.

In Fig. 11 we report the validation accuracy reached by
MPNN and SPADA varying the adopted dataset and for dif-
ferent standard deviations of the noise. For the MPNN we use
training and validation datasets with the same value of σ, while
the standard deviation of the likelihood in the SPADA is the
same as in the validation dataset. We notice that the absolute
performances of MPNN outperform the classic SPADA for
both σ = 0.1 m and σ = 0.5 m and for all datasets. Therefore,
the proposed method is able to fully solve the problem and
learn synthetic or realistic noise representations. Clearly, for the
dataset obtained with PointPillars, we cannot tune the quantity
of noise introduced by the ML model and consequently the red
and blue circles for the dataset PointPillars coincide. Lastly,
we can observe that the degradation of performances passing
from σ = 0.1 m to σ = 0.5 m are worst for the MPNN. This
behaviour is further investigated in the next experiment.

Fig. 11. Comparison of reached accuracy using MPNN (circles) and SPADA
(triangles) in different validation datasets. Red markers represent an artificial
measurement noise in the validation dataset with standard deviation 0.1 m,
while the blue markers describe a standard deviation of 0.5 m. For the MPNN,
the noise statistics of the training match those of the validation, whereas for
SPADA the standard deviation of the likelihood matches the standard deviation
of the noise in the validation dataset.

8) MPNN vs SPADA - Performances on Different Noise
Intensity: In this last assessment, we study how the MPNN and
SPADA perform over different levels of detection accuracies.
This is useful to understand if there are conditions in which
one method outperforms the other.

To this aim, we consider different standard deviations of
the Gaussian measurement error. The results of this analysis
are in Fig. 12, where we report the validation accuracy of the
MPNN and SPADA in a scenario with 100 (Fig. 12(a)) or 50
(Fig. 12(b)) pedestrians to be detected. First, we observe that
the performances for the scenario in Fig. 12(b) are generally
higher than for the scenario in Fig. 12(a). This is due to the
fact that with a higher number of pedestrians, the uncertainty on
the data association increases and the data association becomes
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Fig. 12. Comparison of the impact of measurement error in terms of accuracy between MPNN and SPADA for a scenario with (a) 100 pedestrians or (b)
50 pedestrians. An isotropic Gaussian distribution with standard deviation σ is considered for the additive noise statistics.

more challenging. Second, comparing the two methods across
different noise intensities, we note that the MPNN is preferable
when the standard deviation of the noise is below 1.8 m in both
scenarios. We believe that this behaviour is caused by the fact
that the MPNN has difficulties in learning a noise with high
variance with respect to a low power noise. On the contrary,
the SPADA depends on the standard deviation of the likelihood
that in this case is known a-priori and equal to the standard
deviation of the validation dataset. Therefore, with high noise
intensities, it is preferable to use SPADA as we would need too
many samples to learn the noise directly from data.

V. CONCLUSION

This paper addressed the problem of data association in a
cooperative vehicular sensing scenario with multiple vehicles
detecting pedestrians through lidar sensors. To solve the prob-
lem, we proposed an MPNN model based on a novel graph
representation encoding node and edge feature attributes to
express the detection knowledge. The validation was carried
out in a vehicular environment simulated by CARLA software,
which allows to reproduce realistic cooperative lidar sensing
scenarios. We considered the PointPillars model for the extrac-
tion of bounding boxes from the lidar point cloud, obtaining
realistic statistics of bounding boxes measurements. Further-
more, we compared the proposed method with the conventional
SPADA to investigate the generalization capabilities and peak
performances.

Results showed that the proposed MPNN model is able to
learn the correct associations under several realistic measure-
ment statistics and handles good generalization capabilities
when it comes to dealing with untrained conditions, such as
different measurement error statistics, noise intensities, num-
ber of vehicles and new scenarios. The lidar detection er-
ror introduced by PointPillars has been found to be well
approximated by a Gaussian distribution with standard devia-
tion equal to 10 cm. Under this condition, very high accuracy
can be reached by training the model on artificial noises, e.g.,
Laplace or Gaussian, and then validate the model on the field

with realistic noise distribution produced by PointPillars. Con-
cerning the comparison with the classic SPADA, we found that,
under overestimation of noise intensity, the proposed method
achieved higher performances. Moreover, regarding peak per-
formances, MPNN completely outperforms SPADA up to a
noise standard deviation of 1.8 m.

In the incoming years, the relevance of cooperative percep-
tion is expected to grow rapidly, particularly in the context of
automated and connected mobility, where the new-generation
V2X communication technologies bring opportunities for the
development of new services. It follows that an efficient man-
agement of data association is a fundamental and crucial step for
enabling cooperative sensing. As a result, we expect our work
to be extended and applied to different contexts. By enhancing
the data association performance, our method provides a solid
foundation for more accurate and robust object tracking when
combined with existing tracking algorithms which exploit the
information shared by the vehicles to perform cooperative po-
sitioning or sensing of the surrounding environment.

A natural extension of the work would be to manage and
account for possible false and/or missed detections through
intra-temporal association and non fully-connected vehicular
networks. Future developments could also embrace the area of
distributed sensor networks in which the flood of information
over sensors demands fast interactions of locally-available data
but guarantees higher resilience compared to centralized archi-
tecture, overcoming the problem of single point of failure. On
the other hand, hop-by-hop transport might introduce a non-
negligible time delay before the same full information is avail-
able at all nodes. In addition, we plan to evaluate our method on
real-world cooperative data which would help further validate
and refine our approach, ensuring its effectiveness in addressing
real-world object detection and tracking challenges.
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Message Passing Neural Network Versus Message
Passing Algorithm for Cooperative Positioning

Bernardo Camajori Tedeschini , Graduate Student Member, IEEE, Mattia Brambilla , Member, IEEE,
and Monica Nicoli , Senior Member, IEEE

Abstract—Cooperative Positioning (CP) relies on a network
of connected agents equipped with sensing and communica-
tion technologies to improve the positioning performance of
standalone solutions. In this paper, we develop a completely
data-driven model combining Long Short-Term Memory (LSTM)
and Message Passing Neural Network (MPNN) for CP, where
agents estimate their states from inter-agent and ego-agent
measurements. The proposed LSTM-MPNN model is derived
by exploiting the analogy with the probability-based Message
Passing Algorithm (MPA), from which the graph-based struc-
ture of the problem and message passing scheme are inherited.
In our solution, the LSTM block predicts the motion of the
agents, while the MPNN elaborates the node and edge embed-
dings for an effective inference of the agents’ state. We present
numerical evidence that our approach can enhance position esti-
mation, while being at the same time an order of magnitude less
complex than typical particle-based implementations of MPA for
non-linear problems. In particular, the presented LSTM-MPNN
model can reduce the error on agents’ positioning to one third
compared to MPA-based CP, it holds a higher convergence speed
and better exploits cooperation among agents.

Index Terms—Message passing neural network, message pass-
ing algorithm, belief propagation, cooperative positioning, LSTM,
message passing.

I. INTRODUCTION

A. Contextualization and Background

S IGNAL processing techniques operating over centralized
or distributed network architectures have been largely

studied in the past, especially for Situation Awareness (SA)
applications [1], [2], [3], [4]. The main application domains
include Internet of Things (IoT) [5], Connected Autonomous
Vehicles (CAVs) [6], [7] and Maritime Situational Awareness
(MSA) [8], [9]. These applications are critical as they require
sensors (hereafter generally referred as agents) monitoring
and perceiving their surroundings and making informed deci-
sions based on the perceived information. The key aspect
is the cooperation among agents which enables Cooperative
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Positioning (CP) techniques and enhances the perception of
the environment.

The Message Passing Algorithm (MPA), also known
as Belief Propagation (BP) or Sum-Product Algorithm
(SPA) [10], [11], is a probabilistic iterative technique which
has gained a lot of interest in the field of CP [12] given its
ability of linearly scaling with the number of agents [13].
MPA has been largely employed in a different number of SA
frameworks, mainly addressing the Multiple Object Tracking
(MOT) problem with static or mobile sensing agents [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
embedding or not the measurement to target association
problem [25], [26], [27], [28].

B. Related Works

MPA attains optimal performances in case of linear mod-
els and Gaussian processes, where the iteratively computed
marginal posterior belief converges to the exact marginal
posterior distribution. When the conditions of linearity and
Gaussianity are not met, particle-based MPA can be employed,
although this typically results in a notable increase of com-
putational and communication expenses (i.e., due to particles’
sharing and aggregation). Some works tried to improve perfor-
mances of particle-based MPA implementations by reducing
the particle degeneracy in dense and large networks [29], [30]
or by auto-tuning the parameters of time-varying system mod-
els [31]. However, they did not resolve the main issue of MPA,
which is related to the convergence of the beliefs.

Since MPA involves a repeated exchange of information
(i.e., an iterative message passing) over a graph that is rep-
resentative of the considered problem, the intrinsic cyclic
structure of graphs leads the MPA‘s outcome to be only
an approximation of the true marginal posterior distribution
as the algorithm converges to a local optimum [32], [33],
[34], [35]. Specifically, the approximation of beliefs can be
considered satisfactory if the optimization problem is locally
convex. To improve the performances, Neural Enhanced Belief
Propagation (NEBP) have been recently proposed [36], [37],
[38], [39], wherein MPA and Message Passing Neural Network
(MPNN) are combined to rectify errors caused by cycles and
model mismatch.

The MPNN [40], [41] is an extension of Neural Network
(NN) customized to work on graph structures. Indeed, in con-
ventional MPNN, a NN is present in each node and edge of
the graph, elaborating the input features through an iterative

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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message passing scheme. The elaborated features, i.e., node
and edge embeddings, are usually taken as input to perform a
specific task, like node/edge regression or classification. Given
their similarity with the message passing in MPA, they have
been used within the NEBP framework to address the problems
of Data Association (DA) [39], CP [37] and also MOT [38],
as well as with the implicit cooperative positioning frame-
work [42]. However, NEBP approaches require performing
both iterations of MPNN and MPA, increasing the already high
computational time of particle-based methods. Furthermore, it
has been demonstrated that in cases where sufficient train-
ing data are available, MPNN exhibit superior performance
to MPA on cyclic graphs [43], while at the same time being
scalable and able to learn non-linear dependencies.

C. Contribution

In this paper, we propose an MPNN solution that can be
used as an efficient alternative of MPA in high-complexity
problems. We made a first attempt in this direction in [44]
where we employed MPNN for solving DA in sensor
networks. Here we generalize the analysis by investigating the
parallelism between MPA and MPNN, and comparing their
performances in the challenging context of dynamic CP.

Mobile CP systems rely on a dynamic model for describ-
ing the temporal evolution of the agent locations and a graph
model for modeling the inter-agent measurements. Here we
propose an NN architecture that combines a Long Short-
Term Memory (LSTM) for dynamics modeling and an MPNN
for the computation of the marginal likelihoods. The LSTM
learns the motion model of agents in time, while the iterative
update of estimates based on measurements is obtained with
the MPNN.

The main contributions of this paper are as follows:
• definition of a theoretical framework based on the anal-

ogy between MPA and MPNN, with focus on the defi-
nition of exchanged messages, iterative processing steps
and inference prediction;

• proposal of an LSTM-MPNN model which completely
replaces MPA for the task of CP. The model is trained
using a centralized approach, while it is able to perform
a completely distributed inference after deployment;

• comparison with the conventional particle-based MPA,
with particular focus on positioning performances and
generalization properties.

D. Paper Organization

This paper is organized as follows. Section II is devoted
to the description of the adopted system model. Section III
first describes the MPA for CP, giving the main steps of
the algorithm, and then defines the proposed LSTM-MPNN
model with a one-to-one parallelism with MPA. Lastly, it pro-
vides insights on distributed inference and centralized training
procedures. Section IV presents the simulation scenario and
implementation details, followed by simulation results, while
Section V draws the conclusions.

II. SYSTEM MODEL

We denote with In = {1, . . . , In} a set of connected
agents at timestep n . The connectivity graph between agents

is denoted with Gn = (Vn , En ), where each node i ∈ Vn

corresponds to an agent, while the edge (i, j), with i �= j ,
indicates the presence of a communication link from agent i
to agent j. Note that the graph is directed, i.e., edges (i, j)
and (j, i) differ, and might not necessarily be contemporary
present. Each agent i ∈ In communicates with the set Ni ,n

of its neighbors and it is described by the state xi ,n , which
includes kinematic parameters such as posiDon and velocity..
The motion model of agent i from time n − 1 to time n is
described by:

xi ,n = f (x)
(
xi ,n−1, w

(x)
i ,n−1

)
, (1)

where w
(x)
i ,n−1 is the driving noise process that accounts for

motion uncertainty. The derived state-transition probability
density function (pdf) is indicated with p(xi ,n |xi ,n−1), which,
at time n = 0, coincides with the prior pdf p(xi ,0).

Each agent has access to two types of measurements:
a partial and noisy observation z

(A)
i ,n = f (A)(xi ,n , w

(A)
i ,n )

of its own state vector, and an inter-agent measure-
ment z

(A2A)
j→i ,n = f (A2A)(xj ,n , xi ,n , w

(A2A)
i ,n ), ∀j ∈ Ni ,n ,

where w
(A)
i ,n and w

(A2A)
i ,n are the state and inter-agent

measurement noises, respectively. The functions f (A)(·)
and f (A2A)(·), jointly with the statistics of noises
w

(A)
i ,n and w

(A2A)
i ,n , define the likelihood functions p(z

(A)
i ,n |xi ,n )

and p(z
(A2A)
j→i ,n |xj ,n , xi ,n ), respectively. The driving processes

and measurement noises are assumed to be independent
across agent pairs (i , j ) and over time n . We indicate with
xn = {xi ,n}In

i=1 the set of state vectors of all agents at time
n , while the two set of measurements are indicated with
z
(A)
n = {z

(A)
i ,n }i∈In

and z
(A2A)
n = {z

(A2A)
j→i ,n}i∈In ,j∈Ni,n

.
The overall set of measurements at time n is
zn = {z

(A)
i ,n , z

(A2A)
i ,n }.

CP aims at estimating the states of agents from all
the aggregated measurements up to time n , i.e., z

(A)
1:n

and z
(A2A)
1:n . The estimated state is indicated with x̂n .

Probabilistic Bayesian methods, such as MPA, use the
marginal posterior pdf p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) to estimate x̂n ,

e.g., through the Minimum Mean Square Error (MMSE)
estimator x̂

(MMSE)
i ,n =

∫
xi ,n p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) dxi ,n [18].

On the other hand, discriminative probabilis-
tic approaches, like Deep Learning (DL), directly
define the posterior pdf with parametric model, i.e.,
p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) = p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ), and

try to find the parameter vector θ that maximizes
x̂i ,n = Exi,n [p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ)] [45]. This is done using

as input a training dataset Strain = {(xn , z
(A)
n , z

(A2A)
n )}Ntrain

n=1
and minimizing the negative log-likelihood, i.e.,
θ = arg minθ [− log(p(xi ,n |z(A)

1:n , z
(A2A)
1:n , θ))].

A compact representation of the temporal evolution
of the system model is reported in Fig. 1, where two
different network topologies (i.e., different measurement
availability) at time n and n + 1 are illustrated.
The purpose of the figure is to highlight the temporal
sequence of CP and visualize different combinations of the
graph Gn .
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Fig. 1. Illustration of the working principle of CP, with highlighted state vectors and measurement sets for two consecutive time instants. The figure highlights
the variation of the graph Gn due to varied network topology and sets of measurements.

III. COOPERATIVE POSITIONING METHODS

In this section, we first review the MPA Bayesian solution
for CP and then we perform a one-to-one comparison with our
newly proposed LSTM-MPNN model. Lastly, a description of
the inference and training procedure is given.

A. MPA-Based CP

The agent’s marginal posterior probability
p(xi ,n |z(A)

1:n , z
(A2A)
1:n ) can be obtained by marginaliz-

ing the joint posterior pdf p(x0:n |z(A)
1:n , z

(A2A)
1:n ), where

x0:n = {xn ′}n
n ′=0. Assuming statistical independence across

agents at timestep n = 0 and adopting Bayes’ rule, the joint
posterior pdf is:

p
(
x0:n |z(A)

1:n , z
(A2A)
1:n

)
∝

In∏

i=1

p
(
xi ,0

) n∏

n ′=1

p
(
xi ,n ′ |xi ,n ′−1

)

p
(
z
(A)
i ,n ′ |xi ,n ′

) ∏

j∈Ni,n′

p
(
z
(A2A)
j→i ,n ′ |xj ,n ′ , xi ,n ′

)
. (2)

Since computing the marginalization of (2) can be unfeasi-
ble or extremely complex, the MPA addresses this issue by
approximating the marginal posterior with an iterative mes-
sage passing scheme over a factor graph which factorizes the
joint posterior pdf in (2). Denoting the beliefs of agent i at
timestep n and message passing iteration t ∈ {1, . . . ,T} with

b
(t)
i ,n � b

(t)
i (xi ,n ) ≈ p(xi ,n |z(A)

1:n , z
(A2A)
1:n ), the MPA-based CP

performs the following operations in parallel for each agent.
1) Prediction message: The predicted state of agent i is

represented by the message:

μi ,−→n
(
xi ,n

)
∝

∫
p
(
xi ,n |xi ,n−1

)
b
(T )
i ,n−1dxi ,n−1, (3)

where b
(T )
i ,n−1 is the agent’s belief computed at previous

time n − 1 after T message passing steps. Note that the
beliefs are initialized at time n = 0 as b

(T )
i ,0 � p(xi ,0).

2) Beliefs exchange: During message passing iteration
t ∈ {1, . . . ,T}, each agent i broadcasts b

(t−1)
i ,n and

receives b
(t−1)
j ,n from its neighbors j ∈ Ni ,n . At t = 1,

the exchanged beliefs are b
(0)
i ,n = μi ,−→n (xi ,n ).

3) Measurement messages computation: During message
passing iteration t ∈ {1, . . . ,T}, each agent i com-
putes two measurements messages (one for each type
of measurement) as:

μ
(t)(A)
i ,n

(
xi ,n

)
� p

(
z
(A)
i ,n |xi ,n

)
, (4)

μ
(t)(A2A)
j→i ,n

(
xi ,n

)
∝
∫

p
(
z
(A2A)
j→i ,n |xj ,n , xi ,n

)
b
(t−1)
j ,n dxj ,n

∀j ∈ Ni ,n . (5)
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4) Beliefs update: At message passing iteration
t ∈ {1, . . . ,T}, the beliefs are updated as:

b
(t)
i,n ∝ µi,−→n (xi,n ) µ

(t)(A)
i,n (xi,n )

∏

j∈Ni,n

µ
(t)(A2A)
j→i,n (xi,n ). (6)

5) State inference: Lastly, after T message passing steps,
the state of agent i is estimated with the MMSE
estimator as:

x̂i ,n = E
[
b
(t)
i ,n

]
. (7)

Step 1) is indicated as prediction step and it is computed once
per timestep n . On the contrary, steps 2), 3) and 4) are called
update steps as they involve the measurements available at
current timestep n and they are performed for all T message
passing iterations per each timestep n .

For graphs with a tree structure, the MPA provides exact
approximation of the beliefs, which coincide with the true
marginal posterior pdf [10]. However, for cyclic graphs, MPA
only provides a reasonably accurate approximation of the
marginal posterior with a computational complexity that lin-
early scales with the number of agents In and message passing
iterations T. Moreover, in case of non-linear motion or mea-
surement models, particle-based methods are recommended,
despite incurring in a significant increase of communication
and computational costs.

In comparison, MPNN holds the same time scalability [46],
it has fewer parameters and it is able to catch any linear or non-
linear relationship between input-output data, outperforming
BP on loopy graphs if there is a sufficient amount of train-
ing data [43]. However, MPNN does not have the knowledge
of features relation between time instants, i.e., each message
passing iteration t at timestep n is completely independent
with respect to the previous timestep n − 1. To solve this
issue, we propose an LSTM-MPNN model which combines
the time-dependent capabilities of the recurrent network as
well as the flexibility and scalability of the message passing
over NNs.

B. LSTM-MPNN-Based CP

The idea behind the proposed solution is to build an equiv-
alent DL-based model of the MPA-based CP described in
Section III-A. We start describing the overall model structure,
shown in Fig. 2, and then we analyze each single model block.
The proposed architecture is composed of two main compo-
nents, an LSTM block and an MPNN block. Adopting the
same logic of the MPA at prediction step, the LSTM at time
n receives in input the output of the MPNN x̂i ,n−1 and pre-
dicts the most likely change of feature state according to the
learned motion model of the agent. This is done by forward-
ing the hidden states of the LSTM throughout the timesteps.
Therefore, the LSTM represents the equivalent block of (3) in
the MPA. On the other hand, the MPNN block is performed
over T message passing steps, exactly as the message passing
in the MPA, and, at last iteration T, it returns the update of fea-
ture states, i.e., x̂i ,n . We remark that, by analogy with MPA,
we adopt the MPNN in place of a Graph Neural Network
(GNN) since the final prediction in the inference step (7) is a
direct function of only the beliefs.

Fig. 2. Block representation of the proposed LSTM-MPNN model.

The MPNN runs on the same physical graph of the agent
network, i.e., Gn . It does not create a different graph abstrac-
tion, thus it can be computed among the physically connected
agents. An MPNN considers two types of features: node
embeddings, i.e., v

(t)
i ,n , and edge embeddings, i.e., e

(t)
j→i ,n . The

embeddings, also called attributes, contain elaborated latent
information that propagates throughout Gn at each message
passing step t . We can see an analogy between MPA update
step and MPNN if we consider the node embeddings v

(t)
i ,n as

elaborated versions of the beliefs b
(t)
i ,n , and the edge embed-

dings e
(t)
j→i ,n as the corresponding measurement messages

between agents μ
(t)(A2A)
j→i ,n .

The proposed MPNN model is composed of NNs for three
different functions, encoding of input features (g

(A)
v (·) and

g
(A2A)
e (·)), update of node and edge embeddings (gv (·) and

ge(·)) and inference regression (g
(regres)
v ). The encoding of

input features is used to extract the most effective repre-
sentation of measurements z

(A)
i ,n and z

(A2A)
j→i ,n to accomplish

the regression task, i.e., agent state estimation. The update
of the node and edge embeddings takes the role of (4), (5)
and (6), preparing the node embeddings v

(t)
i ,n for the inference

prediction computed by the regressor g
(regres)
v .

The complete proposed LSTM-MPNN algorithm is shown
in Fig. 3 and it is computed by each agent i in parallel.

1) Prediction LSTM: The LSTM model in agent i predicts
the node embeddings v

(t)
i ,n at time n as:

v
(0)
i ,n = g

(LSTM)
v

(
x̂i ,n−1

)
, (8)

where g
(LSTM)
v is the LSTM model. At n = 0, the

inference is initialized as x̂i ,n−1 � E[p(xi ,0)]. Note that
the output of the LSTM coincides with the initialization
of the node embeddings at message passing iteration
t = 0. Observing the parallelism with MPA, the belief
estimate b

(T )
i ,n−1 is replaced by the state estimate x̂i ,n−1,

while the state-transition probability pdf p(xi ,n |xi ,n−1)
is learned by the LSTM.

2) Measurements encoding: At each time n , before start-
ing the message passing, the agent and inter-agent
measurements are encoded as:

zh
(A)
i ,n = g

(A)
v

(
z
(A)
i ,n

)
, (9)
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Fig. 3. LSTM-MPNN algorithm for CP. (a) Graph representation of the agent network with agent states and measurements. (b) LSTM prediction at time
n and initialization of node and edge embeddings at message passing iteration t = 0. (c) Exchange of node embeddings among agents. (d) Update of edge
embeddings according to (11). (e) Update of node embeddings according to (12). (f) State inference at time n after T message passing iteration according
to (13).

zh
(A2A)
j→i ,n = g

(A2A)
e

(
z
(A2A)
j→i ,n

)
, ∀j ∈ Ni ,n . (10)

The encoding is necessary to elaborate the input fea-
tures, it transforms the input measurements into a
hidden representation. This is important since all fea-
tures within the message passing should not belong
to the original feature space, but to the hidden
space for data privacy reasons. At message passing
iteration t = 1, the edge embeddings are initialized as:
e
(0)
j→i ,n = zh

(A2A)
j→i ,n .

3) Node embeddings exchange: At message passing
iteration t ∈ {1, . . . ,T}, each agent i broadcasts v

(t−1)
i ,n

and receives v
(t−1)
j ,n from its neighbors j ∈ Ni ,n . Here,

the analogy with MPA is straightforward if we com-
pare the beliefs exchange with the node embeddings
exchange.

4) Edge and node embeddings update: At message pass-
ing iteration t ∈ {1, . . . ,T}, the edge embeddings are
updated as:

e
(t)
j→i,n = ge

(
e
(t−1)
j→i,n , zh

(A2A)
j→i,n , v

(t−1)
j ,n , v

(t−1)
i,n

)
,

∀j ∈ Ni,n . (11)

Note that (11) is the analogous of (5). Subsequently, the
node embeddings are updated as:

v
(t)
i,n = gv

(
v
(t−1)
i,n , v

(0)
i,n , zh

(A)
i,n , Φ

({
e
(t)
j→i,n

}
j ∈ Ni,n

))
, (12)

where Φ(·) is called aggregation function, i.e., a function
invariant to permutations of its inputs (e.g., element-wise
summation, mean, maximum). In the node embeddings
update, exactly as in the beliefs update in (6), the initial
node embeddings v

(0)
i ,n are used as a short-connection

from the output of the LSTM, i.e., prediction step.
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Fig. 4. Performance evaluation of the proposed LSTM-MPNN for CP. (a) Scenario with 16 moving agents. (b) RMSE of position and velocity over time
for the non-cooperative Kalman and particle filters, the cooperative MPA and the proposed LSTM-MPNN.

5) State inference: Lastly, after T message passing steps,
the regressor NN predicts the state of agent i as:

x̂i ,n = x̂
(T )
i ,n = g

(regres)
v

(
v
(T )
i ,n

)
. (13)

The MMSE estimator in (7) is substituted here by the
node regressor g

(regres)
v (·) which has the objective of

extracting the state prediction from the compact node
embeddings.

An interesting fact to point out is that the dimension of
the node and edge embeddings, as well as the dimension
of the encoded measurements, can be changed according to
the problem. As an example, for the case of a state vector
described in terms of 2D position and 2D velocity, we need a
dimension of eight for the encoding of the node vector, i.e.,
corresponding to a propagation of a Gaussian belief distribu-
tion which holds only two parameters (mean and variance).
Increasing the latent feature size leads to a higher complexity
of the model which becomes able to learn more complex non-
linear dependencies. On the contrary, in particle-based BP,
each agent has to exchange a number of parameters equal to
the number of adopted particles, each of them with a dimen-
sion of the state space, which overall is order of magnitudes
higher than the dimension of the latent features in MPNN.

C. Inference and Training Procedure

The proposed LSTM-MPNN model for CP, as the MPA-
based CP, is suited for distributed inference as each agent i

can rely on a local NNs, i.e., g
(LSTM)
v (·), g

(A)
v (·), g

(A2A)
e (·),

gv (·), ge(·) and g
(regres)
v (·). The physical exchange of embed-

dings only happens at step 3) of the message passing algo-
rithm (iteration t) and each agent predicts its own state
update according to (13). However, for convergence, each
NN at each agent should retain the same parameters, as
in classical MPNN. This permits a scalable solution to a

non-predetermined number of edges, i.e., measurements, and
nodes, i.e., agents.

To this aim, we propose a centralized training procedure in
which the NNs are firstly trained to learn the CP task and then
deployed in an agent network. To compute the training loss
and perform back-propagation, we employ the Residual Sum
of Squares (RSS) that is estimated at each timestep n and at
the end of each message passing iteration t after the regressor
prediction x̂

(t)
i ,n as:

L =
1

N

N∑

n=1

1

|Vn |
T∑

t=1

∑

i ∈ Vn

∥∥∥x̂
(t)
i ,n − xi ,n

∥∥∥
2

2
, (14)

where N is the time sequence length on which the LSTM
is trained for tracking. For performance evaluation, we ana-
lyze the Root Mean Square Error (RMSE) on the position and
velocity of agents.

IV. SIMULATION EXPERIMENTS

A. Dataset

We consider a 2D scenario in which In = 16 con-
nected agents move in an area of 200 × 200 m for 100
timesteps of 1 s. The agent trajectories form a star shape
moving from the origin outwards the area (see Fig. 4a),
and the graph Gn is fully connected. The state of the
agents is xi ,n = [pT

i ,n ṗT
i ,n ]T, where pi ,n ∈ R2 and

ṗi ,n ∈ R2 are the 2D position and velocity, respec-

tively. The measurements are defined as z
(A)
i ,n = xi ,n + w

(A)
i ,n

and z
(A2A)
j→i ,n = ‖pj ,n − pi ,n‖2 + w

(A2A)
i ,n . Unless otherwise

specified, a constant velocity model is used, while the
state measurements and inter-agent measurements are zero-
mean Gaussian distributed, i.e., w

(A)
i ,n ∼ N (04, Cw(A)),

with Cw(A) = diag(σ2
p,w(A) , σ

2
p,w(A) , σ

2
ṗ,w(A) , σ

2
ṗ,w(A)), and

Chapter 4. Graph-aware Learning



1672 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 6, DECEMBER 2023

TABLE I
DETAILS ABOUT THE LAYER STRUCTURE OF LSTM AND MLP MODELS

w
(A2A)
i ,n ∼ N (0, σ2

w(A2A)), with standard deviations σp,w(A) =
5 m, σ

ṗ,w(A) = 1 m/s and σw(A2A) = 2 m.
For both MPA and MPNN, we consider T = 10 mes-

sage passing iterations. The proposed LSTM-MPNN model
has been trained on 10000 instances of constant velocity tra-
jectories, varying ṗi ,n ∈ [−10, 10] m/s. In order to enhance
model convergence and prevent biases, we standardized all the
samples by performing a min-max scaler so that each feature
lies in [0, 1]. This is done by having a prior knowledge on
the agent position, i.e., pi ,n ∈ [−100, 100] m, and velocity,
i.e., ṗi ,n ∈ [−10, 10] m/s. We highlight that this is not a
strong assumption, since to cover higher areas we just need to
enlarge the maximum range of the state features. We trained
the LSTM-MPNN model for a total of 300 epochs, using a
batch size of 32 samples and randomizing the order of the
dataset at the beginning of each epoch. Here a sample refers
to an instance of trajectories composed of N = 10 timesteps,
i.e., the training sequence length of the LSTM model.

For the training and testing phases of the model, we used
PyTorch version 1.12 and Python version 3.7.11. These opera-
tions were conducted on a workstation equipped with an Intel
Xeon Silver 4210R CPU, which operates at a frequency of
2.40 GHz. The workstation was also supported by 96 GB
of RAM and a Quadro RTX 6000 GPU with 24 GB of
memory. For what concerns the optimizer, we used the Adam
optimization algorithm [47] with an initial learning rate of
0.0001, and momentum values of 0.9 and 0.999 for β1 and
β2, respectively.

B. Model and Implementation Details

The LSTM architecture has been inspired by [48], but
here we reduced its complexity such that it is constituted by
two LSTM layers and a hidden output dimension, i.e., node
embeddings, of 16. The complexity reduction is motivated by
considering that the state estimation in CP comprises two steps
(i.e., prediction and update). For the measurement encoding,
update of node and edge embeddings, and state inference,
we use Multi-Layer Perceptrons (MLPs) with linear layers
and Gaussian Error Linear Unitss (GELUs) activation func-
tions [49]. The complete LSTM and Multi-Layer Perceptrons
(MLPs) model structures are reported in Table I.

The selected final architecture of our model was derived
upon experimentation, including varying the number of layers
and neurons. However, the main rationale behind the general
structures is the following. First, the NN encoders g

(A)
v (·) and

g
(A2A)
e (·), despite their small input sizes of 1 × 1 and 4 × 1,

are characterized by a higher computational complexity when
normalized by input size in comparison to the node and edge
embedding updates. Second, between gv (·) and ge(·), the latter
is more complex given its primary role at the initial step of
each iteration and the need of processing non-linear inter-agent
measurements z

(A2A)
j→i ,n . Finally, the state inference regressor

g
(regres)
v (·) is the most challenging task and thus it requires

an additional linear layer (4 in total) to effectively predict the
state.

C. Simulation Results

1) Tracking Performances: The first test aims at assess-
ing the performances of the proposed LSTM-MPNN model
and highlighting the advantages of adopting a data-driven
solution. The comparison includes two non cooperative algo-
rithms, i.e., a Kalman Filter (KF) and a Particle Filter (PF),
which only use the agent state measurements z

(A)
i ,n , and the

cooperative MPA described in Section III-A, which uses
the agent state measurements z

(A)
i ,n and the inter-agent ones

z
(A2A)
j→i ,n , and it is implemented following a particle based

approach.
For the particle-based methods, the number of particles

is set to NPF = 1000. We would like to point out that
the KF represents the optimal non-cooperative case since all
noises are Gaussian and all models, i.e., motion and agent
state measurements, are linear. On the contrary, the MPA
results to be sub-optimal given the non-linearity of inter-agent
measurements and the full connectivity of the agent graph.

The results of the comparison are reported in Fig. 4, where
we show a realization of the scenario (Fig. 4a) and the
RMSE of the position and velocity for each timestep (Fig. 4b)
(averaged over 30 simulations). Starting from non-cooperative
methods, we notice that the KF is well approximated by the
particle-based MPA and reaches a positioning error of 1.62 m
while tracking. The cooperative MPA permits to increase the
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Fig. 5. Analysis of the impact of driving noise standard deviation on the
position accuracy for MPA and LSTM-MPNN.

performances by reaching an RMSE on position of 89 cm at
convergence. Lastly, the proposed LSTM-MPNN method out-
performs all the other methods, achieving an RMSE of 21 cm
on the position. Concerning the velocities, all the methods
converge at about 0.05 m/s of RMSE. Apart from regime per-
formances, an additional important aspect to consider is the
model convergence. Indeed, the LSTM-MPNN method is able
to converge after few timesteps, while BP-based algorithms
require more time. This feature allows the LSTM-MPNN
model to fast react in case of track initialization and recov-
ery after a sudden trajectory variation as it rapidly forgets
the previous estimates, updating the state knowledge through
LSTM hidden states.

2) Generalization Capabilities: This experiment compares
the performances of MPA and LSTM-MPNN under different
validation conditions. In particular, we test different inten-
sities of driving process and state-measurement noises. The
MPA retains inside the true value of the motion and mea-
surement noises, while the LSTM-MPNN has been trained
with noise-free driving processes and measurement models.
This is done in order to prove the efficacy of the method
with a full-calibrated MPA and a completely miscalibrated
LSTM-MPNN.

In a first test, we consider a zero-mean Gaussian-distributed
driving noise, i.e., w

(x)
i ,n ∼ N (04, Cw(x)), with Cw(x) =

diag(σ2
p,w(x) , σ

2
p,w(x) , σ

2
ṗ,w(x) , σ

2
ṗ,w(x)). In Fig. 5, we compare

the MPA and LSTM-MPNN in terms of RMSE on position,
with σp,w(x) = 0 m and varying σ

ṗ,w(x) ∈ [0, 10] m/s. From
the results, we notice that when σ

ṗ,w(x) < 0.5 m/s, the
proposed LSTM-MPNN outperforms the particle-based MPA.
On the contrary, increasing the noise intensity leads to a faster
degradation of performances with respect to the MPA. This
is justified by two main factors. Firstly, the model has been

Fig. 6. Comparison of the impact of state-measurement noise error in terms
of RMSE of the position between MPA and LSTM-MPNN.

trained using error-free trajectories, leading it to anticipate
motion models that adhere to the distribution of the training
trajectories. Secondly, the increased noise raises the likelihood
of encountering an agent with a speed beyond the train-
ing range of [−10, 10] m/s, potentially leading to inaccurate
predictions.

In a second test, we consider a constant motion model and
a varying state-measurement noise, i.e., σp,w(A) ∈ [0, 10] m.
This time, analyzing the results in Fig. 6, we observe that the
LSTM-MPNN achieves a lower RMSE across all considered
values of state measurement noise. This confirms the trend
that on peak performances, i.e., with same noises and within
the same area of cooperation, the proposed LSTM-MPNN
model outperforms the cooperative MPA method by reducing
the error to one third. Moreover, even with unfavorable con-
ditions, i.e., training on absence of noise, the LSTM-MPNN
model better generalizes against noisy state-measurements.

3) Impact on Different Number of Agents: For this last
assessment, we evaluate how the different number of cooper-
ative agents affects the performances of the two methods. To
this aim, in Fig. 7, we plot the RMSE on the position varying
the number of connected agents In ∈ [2, 22]. As expected, we
observe that, for a low number of agents, the two methods tend
to converge to the RMSE achieved for the non-cooperative
case, i.e., about 1.5 m. This confirms that with a decreasing
number of agents, the LSTM-MPNN model converges to the
optimal case of single-agent KF. Increasing In , the coopera-
tion plays a crucial role in improving CP, especially for the
proposed LSTM-MPNN model. As a matter of fact, in LSTM-
MPNN with only 6 cooperative agents the same RMSE of 20
agents for the MPA method is achieved.

4) Computational Complexity: Given the same graph struc-
ture and same number of message passing iterations between
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Fig. 7. Comparison of the impact of varying number of cooperative agents
in terms of RMSE of the position between MPA and LSTM-MPNN.

MPA and LSTM-MPNN models, the major difference in
computational complexity lies in the computation of the
prediction and update steps. In order to compare one-to-one
the two methods, we define with NPF and Nh the num-
ber of particles in MPA and the dimension of the node and
edge embeddings, respectively. These variables drive the com-
putational complexity since they tune the trade-off between
performances and efficiency. Indeed, NPF and Nh are the
dimension of the messages exchanged during each message
passing step. Moreover, in MPA, NPF regulates the capabil-
ity of the model of approximating the distributions according
to the importance sampling principle. In LSTM-MPNN, Nh
has the same function of NPF in MPA, but with the funda-
mental difference that here the exchanged vector, i.e., node
embedding, does not represent an approximation of the dis-
tributions using a sampling mechanism. On the contrary, it
represents an effective combination of distribution parameters,
e.g., moments, in order to accomplish the CP task.

To this aim, in Fig. 8 we show the whole prediction time
of an instance of agent trajectories, i.e., 16 agents moving
as shown in Fig. 4a, varying NPF or Nh according to the
model. Note that here the time required to exchange the par-
ticles and the node embeddings are not considered. Moreover,
for a fair comparison, all agent predictions are computed on
CPU and in a sequential manner. Observing the results, we
notice that the LSTM-MPNN is very efficient for a number
of latent dimension Nh < 100, performing the whole infer-
ence in less than 1 s. On the contrary, the MPA is slower
even with NPF = 100 particles. Comparing the two meth-
ods for NPF = Nh , we note that, from a pure inference time
point of view, it is more convenient to adopt the LSTM-MPNN
if NPF = Nh < 1000. However, we would like to point out
that, comparing the two methods with the previously adopted
NPF = 1000 and Nh = 16, we obtain an inference time of

Fig. 8. Comparison of the impact of varying number of particles NPF and
node embedding dimension Nh in terms of inference time between MPA and
LSTM-MPNN.

600 ms and 11 s for the LSTM-MPNN and MPA, respectively.
Thus, with the proposed method, we reach one third of the
error at 1/18 of the time.

V. CONCLUSION

This paper addressed the problem of CP by proposing an
innovative LSTM-MPNN model that can be considered as
a promising alternative to conventional probabilistic MPA.
Besides providing for the first time a one-to-one paral-
lelism with respect to MPA, we demonstrated the improved
performance of a fully DL-based model. We detailed each part
of the proposed model, starting from the need of temporal-
dependence solved using an LSTM block, up to the message
passing structure. The MPNN runs on the same physical graph
created by the network of connected agents and it is able to
perform inference in a completely distributed way. Mirroring
the MPA, the messages, i.e., node embeddings, are exchanged
between agents until convergence. Finally, as opposed to the
MMSE estimator in MPA, the state inference is carried out
through a NN at the node.

We validated the proposed approach in a synthetic network
of cooperative agents moving in a scenario over straight trajec-
tories. Numerical results showed that the proposed approach
is able to address the problem of CP in an efficient and effec-
tive way by outperforming particle-based MPA in a different
number of aspects. First, under peak performances point of
view, the LSTM-MPNN model reaches a lower RMSE on the
position by a factor of 3. Second, the LSTM-MPNN model
holds a much higher speed of convergence, an order of mag-
nitude lower computational complexity. As an example, in our
experiments, the dimension of the messages exchanged by the
MPNN is 16, while the number of particles exchanged by

Chapter 4. Graph-aware Learning



CAMAJORI TEDESCHINI et al.: MESSAGE PASSING NEURAL NETWORK VERSUS MPA FOR CP 1675

the BP is 1000. Moreover, the proposed model better handles
different state-measurement noises, as well as driving noises
if trained on all ranges of state feature values. Finally, the
LSTM-MPNN model better exploits the power of coopera-
tion, giving a huge improvement even with small number of
cooperating agents.

The value of cooperative positioning is foreseen to dramati-
cally grow over the next several years, especially in the context
of automated and connected mobility, where dense networks of
agents have to handle complex and dynamic environments. It
results that an effective data-driven approach is of paramount
importance to enhance positioning capabilities. Our method
makes a step toward this direction, by enabling distributed and
efficient cooperative inference. Future developments could be
implementing not only a distributed inference but also a dis-
tributed training, maintaining at the same time the agent’s local
data privacy. Moreover, applications of fully DL-based meth-
ods are foreseen for the major fields of target detection and
tracking.

CODE AVAILABILITY STATEMENT

The GitHub repository with the dataset and the Python code
for the model, training and inference is available upon request
to the corresponding author.

REFERENCES

[1] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of
network localization and navigation,” Proc. IEEE, vol. 106, no. 7,
pp. 1136–1165, Jul. 2018. [Online]. Available: https://ieeexplore.ieee.
org/document/8421288/

[2] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor, “Network
operation strategies for efficient localization and navigation,” Proc.
IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8421291/

[3] M. Win et al., “Network localization and navigation via cooperation,”
IEEE Wireless Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.
[Online]. Available: http://ieeexplore.ieee.org/document/5762798/

[4] D. Gaglione et al., “Bayesian information fusion and multitarget track-
ing for maritime situational awareness,” IET Radar Sonar Navigat.,
vol. 14, no. 12, pp. 1845–1857, Dec. 2020. [Online]. Available: https://
onlinelibrary.wiley.com/doi/10.1049/iet-rsn.2019.0508

[5] A. A. Saucan and M. Z. Win, “Information-seeking sensor selec-
tion for Ocean-of-Things,” IEEE Internet Things J., vol. 7, no. 10,
pp. 10072–10088, Oct. 2020. [Online]. Available: https://ieeexplore.ieee.
org/document/9086780/

[6] M. Brambilla, M. Nicoli, G. Soatti, and F. Deflorio, “Augmenting vehi-
cle localization by cooperative sensing of the driving environment:
Insight on data association in urban traffic scenarios,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 4, pp. 1646–1663, Apr. 2020. [Online].
Available: https://ieeexplore.ieee.org/document/8848842/

[7] S. Zhang et al., “Distributed direct localization suitable for dense
networks,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 2,
pp. 1209–1227, Apr. 2020. [Online]. Available: https://ieeexplore.ieee.
org/document/8762217/

[8] G. Ferri et al., “Cooperative robotic networks for underwater surveil-
lance: An overview,” IET Radar Sonar Navigat., vol. 11, no. 12,
pp. 1740–1761, Dec. 2017. [Online]. Available: https://onlinelibrary.
wiley.com/doi/10.1049/iet-rsn.2017.0074

[9] P. Braca, P. Willett, K. LePage, S. Marano, and V. Matta, “Bayesian
tracking in underwater wireless sensor networks with port-starboard
ambiguity,” IEEE Trans. Signal Process., vol. 62, no. 7, pp. 1864–1878,
Apr. 2014. [Online]. Available: http://ieeexplore.ieee.org/document/
6737314/

[10] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001. [Online]. Available: http://ieeexplore.ieee.org/
document/910572/

[11] D. Bickson, O. Shental, and D. Dolev, “Distributed Kalman filter
via Gaussian belief propagation,” in Proc. 46th Annu. Allerton Conf.
Commun. Control Comput., Sep. 2008, pp. 628–635.

[12] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.
[Online]. Available: http://ieeexplore.ieee.org/document/4802193/

[13] R. Sánchez-Caucem I. París, and F. J. Díez, “Sum-product networks:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7,
pp. 3821–3839, Jul. 2022.

[14] W. Zhang and F. Meyer. “Multisensor multiobject tracking with high-
dimensional object states.” Dec. 2022. [Online]. Available: https://arxiv.
org/abs/2212.14556.

[15] D. Gaglione, P. Braca, G. Soldi, F. Meyer, F. Hlawatsch, and M. Z. Win,
“Fusion of sensor measurements and target-provided information in mul-
titarget tracking,” IEEE Trans. Signal Process., vol. 70, pp. 322–336,
Dec. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/
9633194/

[16] F. Meyer and J. Williams, “Scalable detection and tracking of geometric
extended objects,” IEEE Trans. Signal Process., vol. 69, pp. 6283–6298,
Oct. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/
9585528/

[17] R. Mendrzik et al., “Joint multitarget tracking and dynamic
network localization in the underwater domain,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP). Barcelona, Spain,
May 2020, pp. 4890–4894. [Online]. Available: https://ieeexplore.ieee.
org/document/9054047/

[18] F. Meyer et al., “Message passing algorithms for scalable multitarget
tracking,” Proc. IEEE, vol. 106, no. 2, pp. 221–259, Feb. 2018. [Online].
Available: http://ieeexplore.ieee.org/document/8290605/

[19] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm
for tracking an unknown number of targets using multiple sensors,”
IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3478–3493, Jul. 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/7889057/

[20] M. Brambilla et al., “Cooperative localization and multitarget tracking in
agent networks with the sum-product algorithm,” IEEE Open J. Signal
Process., vol. 3, pp. 169–195, Mar. 2022. [Online]. Available: https://
ieeexplore.ieee.org/document/9729221/

[21] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network local-
ization and navigation with scalable inference and efficient operation,”
IEEE Trans. Mobile Comput., vol. 21, no. 6, pp. 2072–2087, Jun. 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9247273/

[22] F. Meyer and M. Z. Win, “Joint navigation and multitarget track-
ing in networks,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC
Workshops), Kansas City, MO, USA, May 2018, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/document/8403679/

[23] F. Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous
distributed sensor self-localization and target tracking using belief prop-
agation and likelihood consensus,” in Proc. Conf. Rec. 46th Asilomar
Conf. Signals Syst. Comput. (ASILOMAR), Nov. 2012, pp. 1212–1216.

[24] E. Leitinger, S. Grebien, and K. Witrisal, “Multipath-based SLAM
using belief propagation with interacting multiple dynamic models,”
in Proc. 15th Eur. Conf. Antennas Propagat. (EuCAP), Dusseldorf,
Germany, Mar. 2021, pp. 1–5. [Online]. Available: https://ieeexplore.
ieee.org/document/9411320/

[25] F. Meyer and M. Z. Win, “Scalable data association for extended object
tracking,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 491–507,
May 2020. [Online]. Available: https://ieeexplore.ieee.org/document/
9098068/

[26] D. Gaglione, G. Soldi, P. Braca, G. De Magistris, F. Meyer, and
F. Hlawatsch, “Classification-aided multitarget tracking using the sum-
product algorithm,” IEEE Signal Process. Lett., vol. 27, pp. 1710–1714,
Sep. 2020. [Online]. Available: https://ieeexplore.ieee.org/document/
9206541/

[27] F. Meyer and M. Z. Win, “Data association for tracking extended tar-
gets,” in Proc. IEEE Military Commun. Conf. (MILCOM), Norfolk, VA,
USA, Nov. 2019, pp. 337–342. [Online]. Available: https://ieeexplore.
ieee.org/document/9020858/

[28] F. Meyer, Z. Liu, and M. Z. Win, “Scalable probabilistic data asso-
ciation with extended objects,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), Shanghai, China, May 2019, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/8757014/

[29] L. Wielandner, E. Leitinger, F. Meyer, B. Teague, and K. Witrisal,
“Message passing-based cooperative localization with embedded par-
ticle flow,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), Singapore, May 2022, pp. 5652–5656. [Online]. Available:
https://ieeexplore.ieee.org/document/9747585/

Chapter 4. Graph-aware Learning



1676 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 6, DECEMBER 2023

[30] W. Zhang and F. Meyer, “Graph-based multiobject tracking with embed-
ded particle flow,” in Proc. IEEE Radar Conf. (RadarConf21). Atlanta,
GA, USA, May 2021, pp. 1–6. [Online]. Available: https://ieeexplore.
ieee.org/document/9455151/

[31] G. Soldi, F. Meyer, P. Braca, and F. Hlawatsch, “Self-tuning algo-
rithms for multisensor-multitarget tracking using belief propagation,”
IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3922–3937, Aug. 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8714043/

[32] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,” Neural Comput.,
vol. 13, no. 10, pp. 2173–2200, Oct. 2001. [Online]. Available: https://
direct.mit.edu/neco/article/13/10/2173--2200/6465

[33] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approx-
imations and generalized belief propagation algorithms,” IEEE Trans.
Inf. Theory, vol. 51, no. 7, pp. 2282–2312, Jul. 2005. [Online]. Available:
http://ieeexplore.ieee.org/document/1459044/

[34] M. J. Wainwright and M. I. Jordan, “Graphical models, exponen-
tial families, and variational inference,” Found. Trends Mach. Learn.,
vol. 1, nos. 1–2, pp. 1–305, Nov. 2007. [Online]. Available: http://www.
nowpublishers.com/article/Details/MAL-001

[35] E. Riegler, G. E. Kirkelund, C. N. Manchon, M.-A. Badiu, and
B. H. Fleury, “Merging belief propagation and the mean field approxi-
mation: A free energy approach,” IEEE Trans. Inf. Theory, vol. 59, no. 1,
pp. 588–602, Jan. 2013. [Online]. Available: http://ieeexplore.ieee.org/
document/6301723/

[36] V. G. Satorras and M. Welling, “Neural enhanced belief propagation
on factor graphs,” in Proc. 24th Int. Conf. Artificial Intell. Statist.,
Mar. 2021, pp. 685–693. [Online]. Available: https://proceedings.mlr.
press/v130/garcia-satorras21a.html

[37] M. Liang and F. Meyer, “Neural enhanced belief propagation for coop-
erative localization,” in Proc. IEEE Statist. Signal Process. Workshop
(SSP), Rio de Janeiro, Brazil, Jul. 2021, pp. 326–330. [Online].
Available: https://ieeexplore.ieee.org/document/9513853/

[38] M. Liang and F. Meyer. “Neural enhanced belief propagation for mul-
tiobject tracking.” Dec. 2022. [Online]. Available: http://arxiv.org/abs/
2212.08340.

[39] M. Liang and F. Meyer, “Neural enhanced belief propagation for data
association in multiobject tracking,” in Proc. 25th Int. Conf. Inf. Fusion
(FUSION), Jul. 2022, pp. 1–7.

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“Computational capabilities of graph neural networks,” IEEE Trans.
Neural Netw., vol. 20, no. 1, pp. 81–102, Jan. 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/4703190/

[41] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009. [Online]. Available: http://ieeexplore.ieee.
org/document/4700287/

[42] L. Barbieri, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli,
“Implicit vehicle positioning with cooperative lidar sensing,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Jun. 2023,
pp. 1–5.

[43] K. Yoon et al., “Inference in probabilistic graphical models by graph
neural networks,” in Proc. 53rd Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, USA, Nov. 2019, pp. 868–875.

[44] B. C. Tedeschini, M. Brambilla, L. Barbieri, G. Balducci, and M. Nicoli,
“Cooperative lidar sensing for pedestrian detection: Data associa-
tion based on message passing neural networks,” IEEE Trans. Signal
Process., early access, Aug. 2023, doi: 10.1109/TSP.2023.3304002.

[45] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006. [Online]. Available: https://link.springer.com/
book/9780387310732

[46] J. Zhou et al., “Graph neural networks: A review of methods and appli-
cations,” AI Open, vol. 1, pp. 57–81, Apr. 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2666651021000012

[47] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.”
Jan. 2017. [Online]. Available: http://arxiv.org/abs/1412.6980.

[48] J. Liu, Z. Wang, and M. Xu, “Deepmtt: A deep learning maneu-
vering target-tracking algorithm based on bidirectional LSTM
network,” Information. Fusion, vol. 53, pp. 289–304, Jan. 2020.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S1566253518306122

[49] D. Hendrycks and K. Gimpel. “Gaussian error linear units (GELUs).”
Jul. 2020. [Online]. Available: http://arxiv.org/abs/1606.08415.

Bernardo Camajori Tedeschini (Graduate Student
Member, IEEE) received the B.Sc. degree (Hons.)
in computer science and the M.Sc. degree
(Hons.) in telecommunications engineering from
the Politecnico di Milano, Italy, in 2019 and
2021, respectively, where he is currently pursu-
ing the Ph.D. degree in information technology
with the Dipartimento di Elettronica, Informazione
e Bioingegneria.

He is currently a Visiting Researcher with the
Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge, MA, USA. His research
interests include federated learning, machine learning, and localization meth-
ods. He was a recipient of the Ph.D. Grant from the Ministry of the Italian
Government Ministero dell’Istruzione, dell’Università e della Ricerca and the
Roberto Rocca Doctoral Fellowship granted by MIT and the Politecnico di
Milano.

Mattia Brambilla (Member, IEEE) received the
B.Sc. and M.Sc. degrees in telecommunication
engineering and the Ph.D. degree (cum laude) in
information technology from the Politecnico di
Milano in 2015, 2017, and 2021, respectively. He
was a Visiting Researcher with the NATO Centre
for Maritime Research and Experimentation, La
Spezia, Italy, in 2019. In 2021, he joined the faculty
of the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano as a Research
Fellow. His research interests include signal pro-

cessing, statistical learning, and data fusion for cooperative localization and
communication. He was the recipient of the Best Student Paper Award at the
2018 IEEE Statistical Signal Processing Workshop.

Monica Nicoli (Senior Member, IEEE) received
the M.Sc. (Hons.) and Ph.D. degrees in com-
munication engineering from the Politecnico di
Milano, Milan, Italy, in 1998 and 2002, respec-
tively. She was a Visiting Researcher with ENI
Agip from 1998 to 1999 and Uppsala University
in 2001. In 2002, she joined the Politecnico di
Milano as a Faculty Member. She is currently an
Associate Professor of Telecommunications with
the Department of Management, Economics and
Industrial Engineering, Politecnico di Milano.

Her research interests include signal processing, machine learning, and
wireless communications, with emphasis on smart mobility and Internet of
Things. She was a recipient of the Marisa Bellisario Award in 1999 and a co-
recipient of the Best Paper Awards of the EuMA Mediterranean Microwave
Symposium in 2022, the IEEE Symposium on Joint Communications and
Sensing in 2021, the IEEE Statistical Signal Processing Workshop in 2018,
and the IET Intelligent Transport Systems journal in 2014. She is an Associate
Editor of the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS. She has also served as an Associate Editor for the EURASIP
Journal on Wireless Communications and Networking from 2010 to 2017 and
a Lead Guest Editor for the Special Issue on Localization in Mobile Wireless
and Sensor Networks in 2011.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

Chapter 4. Graph-aware Learning





5

C
H

A
P

T
E

R

Federated and Split Learning

In this chapter, we present four works on distributed cooperative learning, namely D-ML
and FD-ML. The distributed algorithms are studied in a real FL platform developed in
the first paper for performing privacy-preserving brain tumor segmentation in medical
networks. The platform is based on the MQTT protocol, and it is flexible to different
models, i.e., architectures and sizes, as well as different FL algorithms, i.e., centralized
and decentralized FL. Motivated by the open issue of synchronization in FL processes,
in the second paper we propose guidelines for designing asynchronous PS orchestra-
tion under heterogeneous IoT devices. In particular, we tune the intervals between
consecutive global model updates based on sample distributions and computational
capabilities, enhancing the accuracy of the system. Then, in the third paper, we address
the problem of non-IID data distributions in decentralized FL processes by proposing
WAC schemes applied to consensus-based FL. Specifically, we evolve the centralized
FedAdp method and introduce three distinct WAC schemes, named CFAdp, tailored for
heterogeneous client populations. Results on real IoT devices show an improvement in
both convergence and performances under both label and sample data skewness. Finally,
in the last paper, the objective was to create a new class of FD-ML algorithms for both
distributed learning and inferences under resource-constrained devices. Inspired by the
recent introduction of SFL algorithms, we propose a novel server-less SCFL framework
that combines the advantages of both SL and consensus-based FL algorithms. SCFL is
based on an innovative distributed version of MPNN, which enables privacy-preserving
and fully-decentralized learning, as well as low-model complexity for IoT devices and
parallel training and testing among agents.
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ABSTRACT Smart healthcare relies on artificial intelligence (AI) functions for learning and analysis of
patient data. Since large and diverse datasets for training of Machine Learning (ML) models can rarely
be found in individual medical centers, classical centralized AI requires moving privacy-sensitive data
from medical institutions to data centers that process the fused information. Training on data centers
thus requires higher communication resource/energy demands while violating privacy. This is considered
today as a significant bottleneck in pursuing scientific collaboration across trans-national clinical medical
research centers. Recently, federated learning (FL) has emerged as a distributed AI approach that enables
the cooperative training of ML models, without the need of sharing patient data. This paper dives into the
analysis of different FL methods and proposes a real-time distributed networking framework based on the
Message Queuing Telemetry Transport (MQTT) protocol. In particular, we design a number of solutions for
ML over networks, based on FL tools relying on a parameter server (PS) and fully decentralized paradigms
driven by consensusmethods. The proposed approach is validated in the context of brain tumor segmentation,
using a modified version of the popular U-NET model with representative clinical datasets obtained from
the daily clinical workflow. The FL process is implemented on multiple physically separated machines
located in different countries and communicating over the Internet. The real-time test-bed is used to obtain
measurements of training accuracy vs. latency trade-offs, and to highlight key operational conditions that
affect the performance in real deployments.

INDEX TERMS Federated learning, learning over networks, medical imaging, healthcare networks, network
architectures, machine learning.

I. INTRODUCTION
Deep learning (DL) and Artificial Intelligence (AI) have
great potential in clinical research as a means for integrating
complex imaging data into personalized indices of diagnosis
and prognosis. Combined with the human pathologist’s
inputs, AI systems have contributed to significantly reduce
the human error rate [1]. On the other hand, the increasing
volume of data, the widespread adoption of Internet-of-
Medical-Things (IoMT) [2] andAI-enabled devices with high

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

computing capabilities, have made conventional centralized
(Big-Data) learning solutions inefficient in terms of latency
and scalability due to the need of moving, often periodically,
large datasets. Besides, regulatory authorities as well as
patient organizations are proposing stringent limitations
to AI-driven data processing, to ensure that private data
are not shared or transferred to third parties, even in
anonymized format [3]. In such a dynamic context, Federated
Learning (FL) technology [4] has been emerging as a viable
solution [5]–[7]. The technology enables the distributed
training of Machine Learning (ML) models over remote
devices, namely the Medical Nodes (MNs), or clients,
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FIGURE 1. From left to right: Centralized Learning (CL), Federated Learning (FL) coordinated by the Parameter Server (PS), namely
Federated Averaging (FA), and Consensus-driven learning with fully decentralized implementation (i.e., without PS).

without requiring the same devices to disclose their training
data, possible containing privacy sensitive information about
patients.

As shown in Figure 1, vanilla FL algorithms, such as
Federated Averaging (FA) [4], [8], allow the MNs to learn
a shared ML model under the orchestration of a Parameter
Server (PS). Typically, the PS interacts with the medical
devices through a network, i.e., using a provider or gateway,
to collect (and store) the received local models. These are
aggregated to obtain a global model that is then fed back to the
edge devices for validation and inference. EachMedical Node
(MN) thus participates in training the shared model using
its own dataset. However, in contrast to classical Centralized
Learning (CL), privacy-sensitive data are kept on the device,
while cooperation is based on local model exchange.

FL uses the data as and when they are received or
available at the MN and it thus supports flexible training
processes, such as continual and incremental learning.
First implementations of FL leveraged on a server-client
architecture [6], [7] where the PS coordinates the learning
process. On the other hand, these classical FL techniques are
often considered not always resilient against model inversion
attacks on the PS, where privacy-critical data can be recreated
using the local models stored by the PS [9], [10].

A. RELATED WORKS
Different FL implementations have emerged in the past few
years [11] targeting several application scenarios [12]–[16]
and technology enablers [17]–[19]. Focusing on the popular
brain tumor image segmentation challenge [20], first steps
towards the integration of a privacy-preserving FL system
into a medical image analysis framework are in [6], [13].
It was demonstrated that the FL model quality is comparable
to that of a model trained using CL on a data fusion
center. The dataset therein used to build and test the AI

system is the multimodal Brain Tumor Segmentation (BraTS)
set [21]–[23]. The FL process typically utilizes the same
training pipeline designed for centralized training: current
state of the art models for 3D brain Magnetic resonance
imaging (MRI) processing are based on an auto-encoder
regularization tool [24], or the U-NET model [25], [26] with
hyperparameter structure described in [27].

The above approaches have two main limits. First, they
only used datasets prepared ad-hoc for testing; they did not
consider how real data coming from hospitals affect the
training process or how to generalize the model. Second,
they rely on a central fusion center for model aggregation
which could lead to privacy leaks. Decentralized training on
incomplete and heterogeneous image datasets (i.e., different
scan modalities) poses new challenges to FL and is the main
focus of this paper. For what concerns the algorithms, the
training process can be implemented via vanilla FL tools
that rely on the PS for distributed coordination. However,
trusted PS designs are needed [28]. As an alternative, fully
distributed learning tools have been recently proposed to
replace, or minimize the use of the PS functions, enabling
server-less training. These techniques have roots in consen-
sus [15] and distributed ledger [29] enablers, as they let the
local models be consensually shared and synchronized across
multiple MNs. They rely solely on in-network processing,
via consensus, diffusion [18], [30], [31] or gossip [32] tools.
Fully decentralized FL policies have been considered for
training on low-power devices (robots, drones) in several
industrial verticals [15], [33] such as robotics, connected
automated vehicles [14], [34] and medical diagnosis [35].
Network scalability/connectivity aspects are however not
considered or discussed.

Though FL approaches are promising, they are often
simulated on virtual frameworks [11] where (virtual) clients
act as independent threads and run on the same physical
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machine. With the exception of [12], [36], [37], pilot
demonstration of FL platforms featuring geographically
distributed devices and real-time training over the Internet
are currently overlooked. In line with the road-map towards
native (in-network) AI designs [38], in this paper we propose
a real-time platform to support network and federated
learning functions integration, validating the proposed FL
solution in a real-world deployment.

B. CONTRIBUTIONS
The paper proposes the application of decentralized FLmeth-
ods in the context of cancer diagnosis, focusing in particular
on brain tumor segmentation. To demonstrate the system
in a real environment, a novel Message Queuing Telemetry
Transport (MQTT) based architecture has been developed.
The platform is employed to verify the performance of
FL over real geographical distributed MNs characterized
by non-uniform computing capabilities and heterogeneous
datasets. Both classical FL based on PS designs and fully
decentralized architectures are evaluated, discussing for each
case their impact on the MQTT publishing/subscription
operations. The proposed networking architecture and tools
are designed to optimize the FL process, weaving together
synchronous and asynchronous operations, as well as taking
into account the training time of the individual clients to avoid
performance penalties caused by slower MNs, namely the
straggler effect [11], [39]. The algorithms and MQTT real-
time network have been demonstrated by combining for the
first time, in a decentralized FL approach, public (BraTS) and
private clinical data obtained from the clinical workflow (with
no pre-filtering).

The main contributions of the paper are further summa-
rized as follows:

• Vanilla and fully decentralized FL algorithms are
integrated into a novel network architecture that adopts
theMQTT transport protocol to orchestrate the deepML
model parameters exchange. We propose an optimized
set of information to be embedded into the MQTT
payload and to characterize the real-time learning
process on each epoch, discussing also model param-
eters compression, serialization and Quality-of-Service
(QoS) mechanisms.

• Implementing FL tools on top of the MQTT protocol
brings novel challenges that are discussed here for the
first time. In particular, 4 mechanisms for ML parameter
exchange are proposed: these account for synchronous
and asynchronous operations on the MNs and the PS,
respectively, as well as decentralized FL, where the
clients, rather than the PS, self-organize to coordinate
the FL process. For all the considered cases, the MQTT
broker is configured to support the client authentication,
authorization as well as to control the access to FL
resources (global/aggregated models, training statistics
and timing). All the proposed architectures are com-
pared to quantify the latency/model quality trade-offs for
synchronous and asynchronous FL processes.

• Validation of the FL tools is based on a federation
of 5 MNs distributed in different institutions across
the Europe and communicating over the Internet.
Focusing on brain tumor segmentation as case study,
the experiments are conducted in real clinical settings
and with medical MRI images obtained from the
daily clinical workflow. The proposed real-time test-
bed thus provides a unique opportunity to quantify the
improvements of the FL process in terms of practical
metrics, namely the Dice Similarity Coefficient (DSC),
and on heterogeneous datasets without any pre-filtering
and not prepared for testing purposes (in contrast to
public and widely available data).

The paper is organized as follows. Section II introduces the
FL algorithms, namely vanilla and fully decentralized tools
based on consensus and analyze them with respect to medical
imaging problems and privacy considerations. Section III
discusses the proposed brain tumor segmentation tasks
and the necessary adaptations for FL system deployment.
Section IV describes the specifications of the proposed
networking architecture and MQTT protocol integrated
designs. Targeting tumor segmentation, section V highlights
a case study with an extensive database of results obtained
from public and private patient datasets. Finally, conclusions
and open issues are summarized in Section VI.

II. FEDERATED LEARNING METHODS
The algorithms analyzed in this section range from vanilla
FL tools, such as Federated Averaging (FA), relying on the
orchestration of the PS, to fully decentralized FL, namely
Consensus-driven Federated Averaging (CFA), based on
distributed coordination. In server-based FL systems, the data
owners (i.e., theMN clients) and the global model owner (i.e.,
the PS) are the two major entities. On the other hand, in fully
decentralized tools the PS is replaced by a consensus over
the clients, namely the local model owners. For all cases, the
data are distributed among N clients rather than being kept
centrally, so each data owner i = 1, . . . ,N , has a private
dataset Di of size Si = |Di|.

A. VANILLA FL
The FL process generally aims to obtain an optimized
global model wG that minimizes a global loss function L(·)
decomposed into the sum of local losses as:

wG = argmin
w
L(w) = argmin

w

[
1
N

N∑
i=1

Li(w)
]
, (1)

with Li(·) being the local loss function observed by client i.
Problem (1) is solved iteratively by alternating the optimiza-
tion of a local model at each client, i.e., using a gradient-
based method, with a round of communication with the PS to
obtain an updated global model. In particular, the FL process
is characterized by three main steps: task initialization
(executed only once at beginning), local model optimization
and aggregation. The task initialization is implemented

VOLUME 10, 2022 8695

Chapter 5. Federated and Split Learning



B. Camajori Tedeschini et al.: Decentralized Federated Learning for Healthcare Networks

during the first iteration, t = 0: the server determines the
target task (i.e., the application and the data requirements),
as well as the key parameters of the global model and the
training process, such as the learning rate or the number of
local epochs. The server then broadcasts the initialized global
model wG,t and task to the chosen participants. In the local
model optimization phase, at iteration t > 0 each participant
utilizes the local data Di and processing capacity to update
the local model parameters wi,t based on the global model
wG,t . The aim of participant i is thus tominimize the local loss
function, wi,t = argminw Li(w). This is solved via gradient
methods, such as Stochastic Gradient Descent (SGD) [40]:

wi,t ← wi,t − η∇Li(wi,t ; bi), (2)

where η is the learning rate while∇Li(wi,t ; bi) represents the
gradient of the loss functionwith respect to themodelwi,t and
it is measured on a data mini-batch bi ⊆ Di. The optimized
local parameterswi,t are sent to the PS to be aggregated. In the
following aggregation step, the PS collects the local models
from the clients and feds back an updated version of global
model parameters for the next iteration t+1, namelywG,t+1.
Main aggregation policies are reviewed in [11, Chapter 3].
Finally the clients use the updated global model to update the
local optimization (2). The training rounds, consisting of the
above described local model optimization and aggregation
steps, are repeated until each model wi,t converges to wG, or
a desired training accuracy is obtained.

B. FEDERATED AVERAGING WITH TRUSTED PS
Themain parameters to control the computational effort of FL
are: the percentage (C) of clients who take part in an update
cycle, the number (E) of local epochs executed by each client
and the mini batch bi size (B) used for each local update.
The latter one, considering the different resources that each
MN may have, can be relaxed and optimized differently in
each node. In what follows, the Federated Averaging (FA)
algorithm introduced by [41] is tuned for the medical imaging
problem.

In the local model optimization step, the client runs, for a
number of local epochs E , the Adaptive Moment Estimation
(Adam) optimizer [42], that exploits first and second order
moments to overcome local minima:

wi,t ← wi,t − η

√
1− βn2
1− βn1

mi,n
√
vi,n + σ

. (3)

β1 and β2 are two hyperparameters and the decaying averages
mi,n and vi,n are computed respectively as follows:

mi,n ← β1mi,n−1 + (1− β1)∇Li(wi,t ; bi) (4)

vi,n ← β2vi,n−1 + (1− β2)∇2Li(wi,t ; bi), (5)

where n is the timestep index of the Adam optimizer. Notice
that SGD is not recommended on complex models as it needs
careful tuning of the learning rate as the training progresses.
For image segmentation problems, i.e., tumor segmentation,
the number of local epochs E is usually kept small

(E = 1, 2), as already verified in other works [13], while
the batch size B is increased as much as possible to exploit all
the parallel computations given by the Graphics Processing
Units (GPUs).

The aggregation step at round t is performed through
a weighted average according to the number of samples
Si = |Di| of each client:

wG,t+1 =
ε∑N
j=1 Sj

N∑
i=1

Siwi,t + (1− ε)wG,t , (6)

where ε regulates the memory of the past models in order
to have smoothed, or less rapid, changes of the weights. The
aggregation step is a crucial part of the algorithm and affects
the performances. Studies on the adaptive weight function,
that regulates the importance of the client’s contribution in
the global model, have been performed in [19]. However,
in the context ofmedical imaging, thismethod is less effective
since the datasets in the MNs present few variations of the
brightness and/or the noise figure.

Much attention instead should be paid to the charac-
terization or customization of the models in each client.
For example, FedPer, proposed in [43] splits the layers
of the deep learning model into baseline and personalized
ones. While the basic layers are collaboratively learned
using the traditional FL technique, the personalized ones
are learned locally and not shared, i.e. opportunistically,
allowing more flexible training of multiple tasks. Adaptation
of this technique to more complex models employed for
brain tumor segmentation (Section III) should focus on
the encoder part, which is generally a pre-trained clas-
sification network like VGG [44]/ResNet [45]. On the
other hand, the decoder part could host the personalization
layers [46].

C. CONSENSUS-DRIVEN FEDERATED AVERAGING (CFA)
The FA policy discussed in Section II-B relies on the
PS orchestration and may be subject to privacy concerns,
especially if the PS infrastructure is vulnerable (e.g.,
untrusted). In these scenarios, medical sites might avoid
joining the collaborative training process to protect their
privacy-sensitive data despite the benefits introduced by
the cooperation. An alternative approach explored in the
following is the consensus-driven FA strategy, namely CFA,
that provides a solution to the FL problem (1) using a fully
distributed and adaptive approach.

In particular, the CFA consists again of an aggregation
and a local model optimization step: however, differently
from the server-based FL, both steps are implemented by
the MNs on each learning iteration. CFA is thus server-
less as the MNs can cooperate with one another without
the coordination of the PS. Rather than sending the model
updates to the PS, the medical sites can directly forward
the ML model parameters to neighboring participants,
provided that they are authenticated as members of the
pool of FL learners, and using peer-to-peer communication
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Algorithm 1 Consensus-Driven FA
1: procedure CFA(Ni,t ) F Run on client i
2: authentication with network broker
3: receive parameters (η,E,B) F RX from broker
4: initialize wi,0← device i
5: initializemi,0← 0
6: initialize vi,0← 0
7: initialize n← 0 F Adam timestep
8: for each round t = 1, 2, . . . do F Training loop
9: receive{wk,t }k∈Ni,t F RX from broker
10: Dec{wk,t }k∈Ni,t F Decipher weights
11: equation (7) F Aggregation step
12: wk,t = ModelUpdate(ψ i,t )
13: send Enc

(
wi,t

)
F Encrypt and TX to broker

14: end for
15: end procedure
16: procedureMODELUPDATE(ψ i,t ) FModel opt. step
17: B← mini-batches of size B
18: for each local epoch j = 1, 2, . . . ,E do
19: for batch b ∈ B do F Local Adam
20: n← n+ 1
21: mi,n← β1mi,n−1 + (1− β1)∇Li,t (ψ i,t )
22: vi,n← β2vi,n−1 + (1− β2)∇2Li,t (ψ i,t )

23: ψ i,t ← ψ i,t − η

√
1−βn2

1−βn1
·

mi,n
√
vi,n+σ

24: end for
25: end for
26: end procedure

links. The MNs implement an ad-hoc aggregation step that
incorporates into the local model adaptation the information
collected from the local neighborhoods. Such aggregation
is typically based on consensus [18], [47] or gossip
methodologies [48], [49].

The pseudo-code of the CFA can be found in Algorithm 1.
First, local model optimization (3) is performed using local
data Di over a number E of local rounds/epochs which
can be tuned depending on the MN computing and energy
requirements. The updated model is then sent to neighbors.
In the aggregation step, each MN client i implements the
average consensus policy to obtain the aggregated modelψ i,t
with the help of the neighbors:

ψ i,t = wi,t +
εt∑

j∈Ni,t
Sj

∑
k∈Ni,t

Sk
(
wk,t − wi,t

)
, (7)

where εt controls the stability of the update andNi,t contains
the neighbors of client i at round t . Notice that similarly as
for server-based FL, each client might either defer the model
aggregation until the neighbors complete their local model
optimization (synchronous implementation) or rather apply
the model aggregation as soon as they complete their model
optimization, regardless of neighbors status (asynchronous
implementation). These aspects are analyzed in more detail
in the next sections.

D. COMPARATIVE ANALYSIS AND PRIVACY
CONSIDERATIONS
Vanilla FL typically assumes that the PS and the clients are
all honest, meaning that the clients are training with their own
private data in a good faith, and send true local models to
the PS. However, since the PS aggregates the models from
all clients, it is an appealing target for possible attackers and
thereby a single point of failure in the distributed platform.
So, despite the fact that FL can prevent user privacy leaks,
the parameter server is nevertheless subject to threats such
as server-side training sample reconstructions [9]. Therefore,
trusted implementations of the PS are of particular relevance
in order to be suitable for the medical imaging problem. For
example, differential privacy techniques add a noise term
to each local model in order to prevent information from
being exposed during the model exchange [50], [51]. The
problem of untrusted PS is tackled in this paper at network
layer using encrypted and authenticated communications on
each learning iteration, in exchange for larger computa-
tion/communication overhead.

Besides vanilla FL tools, fully decentralized CFA replaces
the PS with consensus and in-network processing directly
between the clients (Sect. II-C). Differently from server-
based FL, where the PS stores the local models of all
the participating clients, in CFA the clients implementing
consensus are owners of a (small) subset of the local models,
namely the ones shared by the neighborhood Ni,t . Thereby,
it is unlikely that a model inversion attack targeting an
individual client could reconstruct the training samples of
all the learners. Furthermore, although the CFA architectural
approach solves the untrusted PS issues, the untrusted client
problem still needs to be carefully considered. For example,
distributed ledger technologies, such as blockchain, provide
an effective approach for removing the PS, that is vulnerable
to attacks [28]. Moreover, it can be also exploited to address
the problem of untrusted clients [52], ensuring security of
local model updates obtained from authenticated clients.
The development of robust decentralized FL designs against
adversarial manipulations or data poisoning is however an
open problem [53].

III. BRAIN TUMOR SEGMENTATION: FL MODELS
AND METRICS
This section describes the brain tumor segmentation and
classification task. In particular, we highlight the ML
model selected for FL processing as well as relevant
loss and accuracy metrics. Tumor segmentation is one
of the fundamental tasks in medical diagnosis to support
radiologists and clinicians, and also to reduce idle times for
evaluating potential treatments. Given a set of MRI slices,
the goal of brain tumor segmentation is to extract regions of
interest that capture the tumor extent and its shape. This is
accomplished by assigning a class label for every pixel (or
voxel) in the images, indicating the presence/absence and/or
the morphology of the tumor. As an example, Fig. 2 reports

VOLUME 10, 2022 8697

Chapter 5. Federated and Split Learning



B. Camajori Tedeschini et al.: Decentralized Federated Learning for Healthcare Networks

FIGURE 2. Brain tumor segmentation with 2 input layers and
4 segmentation levels: MRI typology 1 (up-left), MRI typology 2 (up-right),
ground-truth rn = [r`,n]Ll=1 (down-left), prediction pn = [p`,n]Ll=1
(down-right).

the two input MRI modalities on the top, while the expected
ground-truth and predicted tumor segmentation labels are
in the bottom-left and bottom-right, respectively. Achieving
accurate segmentation labels in this context requires the
definition of complex processing systems capable of handling
MRI scans with different spatial resolutions, modalities, and
levels of noise, according to the specific medical equipment
employed.

A. U-NET MODEL AND FL ADAPTATIONS
Current state-of-the-art ML systems for brain tumor segmen-
tation heavily rely on Convolutional Neural Networks (CNN)
architectures. Most notably, the U-Net model [25] has been
gaining popularity in recent years thanks to its outstanding
performances, especially for medical segmentation tasks.
The U-Net architecture is composed by two parts: the
encoder, which extracts the context from the images, and the
decoder, whose task is to determine the segmentation region.
The encoder uses several convolutional blocks, followed by
max-pooling operations, for encoding the input image into
intermediate representations at different spatial resolutions.
On the other hand, the decoder is a symmetric network,
composed by the same structural form of the encoder,
that performs upsampling and concatenation operations for
extracting the final segmentation from the input image.

In this paper, we employ the U-Net model [27] that
modifies the original one [25] and it is better suited to
the considered FL medical context. Compared to [25],
the encoder introduces dropout layers for allowing better
model generalization and prevent overfitting. Moreover,
the model has been adapted to receive input images with

different number of channels, depending on the available
MRImodalities, while also providing up to four segmentation
levels. In total, it presents about 7.8 millions of parameters
and weights of size 30 MB.

B. DICE LOSS AND SIMILARITY METRICS
The ML model is trained using a combination of two losses,
namely the Generalized Dice Loss (GDL) [54] and the Cross
Entropy (CE). The GDL LGDL is a generalization of the
conventional Dice Loss that takes into account multiple class
segmentation problems, rather than binary ones. Considering
L segmentation labels and K image elements, the GDL can
be computed as:

LGDL = 1− 2

∑L
`=1 w

(`)
D
∑K

n=1 p`,nr`,n∑L
`=1 w

(`)
D
∑K

n=1 p`,n + r`,n
, (8)

where r`,n ∈ {0, 1} and p`,n ∈ {0, 1} are respectively
the voxel values of the reference foreground segmentation
(ground truth) and the values of the predicted map for the
foreground label ` = 1, ..,L (an example is given in Figure 2
with L = 4). w(`)

D is the weight to model the contribution of
each label, and it is defined as w(`)

D =
1

(
∑K

n=1 r`,n)2
. Finally, the

CE loss LCE is:

LCE =
K∑
n=1

L∑
`=1

r`,n log(p`,n). (9)

Note that the formulations of (8), (9) consider the ground-
truth r`,n and the label p`,n segmentations encoded as one-hot
representations. Finally, the total loss in (1) can be computed
as:

L = λLGDL + (1− λ)LCE , (10)

with λ = 0.85 and is used to update the weights of the Neural
Network (NN).

For assessing the quality of the trained models for
brain tumor segmentation, we use the Dice Similarity
Coefficient (DSC) metric [55]. Given a pair of ground-truth
T and predicted segmentation patches P , the DSC ranges
from 0 to 1 and it is computed as:

DSC =
2|P ∩ T | + 1
|P| + |T | + 1

(11)

where |P ∩ T | denotes the intersection between the
predicted and ground-truth patches, while |P| and |T | are
the cardinalities of the predicted and true segmentation,
respectively. High qualitymodels should possess aDSC value
close to 1, indicating a near-optimal match between ground-
truths and predictions. Of course, since the DSC works with
binary masks, a coefficient will be generated for each of the
segmented parts of the tumor (e.g., tumor-core and not-tumor-
core).
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IV. NETWORK ARCHITECTURE AND MQTT PROTOCOL
In this section, a network architecture is proposed to integrate
the FL tools described previously. The proposed system
adopts the MQTT transport protocol to coordinate the real-
time exchange of the U-NET model parameters through
MQTT-compliant publish and subscribe operations. We dis-
cuss the benefits of the chosen transport layer, as compared
with HTTP based representational state transfer (REST)
services, and design an optimized set of information to
be embedded into the MQTT payload, as well as model
parameters compression, serialization andQuality-of-Service
(QoS) mechanisms. The proposed architecture is validated in
Sect.V targeting the brain tumor segmentation task (Sect. III).
Nevertheless, the proposed framework is general enough for
application to distributed training of deep neural network
models.

The aggregation and local model optimization steps of
the FL process can be implemented via synchronous or
asynchronous policies: when the training process adopts the
synchronous orchestration, all the network entities (clients
and PS, if any) share the same time reference t: therefore, the
model aggregation should wait for all the scheduled clients
to complete their local model optimization. Notice that the
aggregation steps on the PS (6) and on the client, in fully
decentralized training (7), can be adopted as they are. On the
contrary, in the asynchronous orchestration, the clients, or the
PS, aggregate the available local models without any regard
of their relative temporal alignments. More specifically,
asynchronous model aggregation (6) implemented on the PS
at time t becomes

wG,t =
ε∑N
j=1 Sj

N∑
i=1

Siwi,t−τi + (1− ε)wG,t−TPS , (12)

with wi,t−τi being the local model from client i available
at time t − τi, τi 6= 0 the relative timing mismatch
with the PS, and TPS regulating the time span between
two global model updates. Similarly, in the asynchronous
implementation of the CFA algorithm, once a medical center
finishes its local model optimization, it immediately switches
to the aggregation step, regardless of whether its neighbors
have already finished their local model optimization or not.
Therefore, each MN i will now receive from neighbors k the
last uploaded models of rounds t − τk , ∀k ∈ Ni,t , namely,
from (13)

ψ i,t = wi,t +
εt∑

j∈Ni,t
Sj

∑
k∈Ni,t

Sk
(
wk,t−τk − wi,t

)
. (13)

In what follows, and based on the above considerations,
we analyze in detail four different network architectures and
related MQTT orchestration mechanisms weaving together
synchronous and asynchronous operations, i.e., on the clients
and/or the PS.

A. MQTT MESSAGING AND FL PROCESS ORCHESTRATION
The choice of the MQTT protocol [56], over for example
the HTTP RESTful, was dictated by many factors, starting

with the superior bandwidth efficiency of MQTT and
lower latency [57]. Another important aspect is the low
overhead of the protocol, designed for low-power machine-
to-machine transactions, which is crucial given the size
of the messages exchanged during the federated training
phase. The MQTT protocol is also suited for one-to-many
communications as needed i.e., during the distribution of
the global model from the PS to the MN. Finally, the
architecture can be easily extended to the Internet-of-Things
(IoT) field, i.e., on embedded devices, or smartphones,
where the implementation is practically constrained by low
computational capabilities and battery usage requirements.

1) MQTT MESSAGING
In the proposed FL architecture, both the PS and the medical
nodes/centers members of the federation act as MQTT
client devices and support publish and subscribe operations.
Devices thus share the layers of the deep learning model
by encapsulating the parameters into the MQTT standard
payload. In particular, the basic subset of information
included in the payload are:

i) the updated weights wi,t of the U-NET model trainable
layers (Sect. III.A),

ii) tunable parameters for monitoring the convergence,
namely: the number E of local rounds to be executed in
each client, the learning rate η to be used in the local
model optimization step, the target DSC performance
(Sect. III.B) and the patience (to apply the early stopping
procedure),

iii) training statistics: the client identification number, the
federated round indicator and the performance metrics,
i.e., DSC in (11), obtained from the validation dataset.

2) PUBLISH-SUBSCRIBE OPERATIONS AND QoS
MQTT publishing and subscription operations are organized
into a number of topics. Considering both FA and CFA
algorithms, the main topics are the ones related to the MN
and PS exchange of the model parameters. In case the model
size exceeds themaximumdimension of theMQTTmessages
(by default set to 250MByte), the model can be automatically
decomposed in different fragments, each representing one
or multiple layers of the model, and published separately.
Other topics are related to the configuration parameters,
to the number of samples of each medical center and to
a timestamp that indicates the last time τk the k medical
center has been seen. Before being sent to the broker, all
messages are first serialized into binary objects with the
cPickle module. We chose to use this module rather than the
classic JSON serialization method because of its higher speed
and flexibility [58]. Messages are further compressed using
the zlib module, in order to occupy less space and bandwidth
(about 10% less), and are sent to the MQTT broker with
Quality of Service (QoS) 2. In particular, QoS 2 implements
a 4-way handshake mechanism that is especially effective
over communication links with poor quality, while adding a
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negligible delay (100 ms) if compared with the time required
for transferring the message payload (>1 s). Minimizing
packet losses is critical in FL while, as also shown in [59],
QoS 2 is the most effective choice for large payload MQTT
publishing operations. For all cases, the TLS protocol is
adopted to encrypt the exchanged messages.

3) MQTT BROKER
Considering FA, the clients publish their data to a MQTT
broker that is in charge of maintaining the model parameters
and forwarding them to the PSwhenever a change is detected.
Multiple copies of the messages, as well as packet losses,
are handled directly by the QoS 2 specification. The MQTT
broker service thus acts as sink node for local models
collection and it is thus maintained until the end of the
training process. According to the type of broker, the memory
size and capabilities can change: in our case, we used a single-
threaded broker but other options are also possible. On each
round, the broker accepts subscriptions from the active clients
that publish their model parameters. Considering server-
based FA, all clients also subscribe to the same broker service,
i.e., to download the updated globalmodel. On the other hand,
for CFA, each client subscribes to its neighbors’ topics to
retrieve their last available models and publishes the updated
model on its related weights topic.

The software that implements the FL process and enables
the MQTT transactions for the client (and the PS) is available
online [60]. Once installed, it is completely self-sustaining
while all network entities maintain an idle mode state until the
training process is initiated or updated. The FL process begins
with a Command&Control (C&C) tool that uploads the main
parameters on the MQTT broker and starts the training. Once
the process is started, the PS or the clients, in case of fully
decentralized implementation, are in charge of maintaining
the training. Furthermore, new authenticated MNs that aim
to join the federation, are accepted from any geographical
location. The number of resources consumed are chosen a
priori according to the complexity of the task and the dataset,
the MN computing capabilities and to the desired training
speed. To stop the process many possibilities are accepted:
reaching a target number of federated rounds or performance,
or a direct message from the C&C tool.

B. SYNCHRONOUS AND ASYNCHRONOUS FL NETWORK
ARCHITECTURES
The development of a network architecture designed for
native FL support over the Internet needs to face two critical
challenges. First, slower clients, i.e., retaining large datasets
(high number of MRI images) or characterized by low
computational resources, experience a longer training time
and might penalize faster clients (straggler effect). Second,
global model updates issued by the PS, if used, or by
the clients, when implementing consensus, should avoid
possible deadlock situations caused by packet losses, i.e.,
links with poor quality as well as delayed model updates from
neighboring clients.

To overcome these issues, we introduce and analyze
different network architectures that leverage distinct levels
of a/synchronicity on the client or the PS (if used),
respectively. We show that introducing temporal variations
and asynchronicity over some of the FL network entities,
namely the clients and the PS, can lead to more efficient
training in the presence of slow/heterogeneous FL learners.
In particular, for the proposed implementation, a client is
considered asynchronous if it can perform more than two
local rounds without stopping or waiting for global/local
model updates from the PS or neighboring clients. The
time span of one local round implemented on client k is
defined as Tround (k), which is the sum of the time required
to download the weights from the MQTT broker, training
the new model (local model optimization step), encrypt,
compress and upload the weights to the broker:

Tround (k) = Tdownload + Ttraining + Tupload . (14)

Considering PS based FL, we implemented a timer that fires
every server sleep time, namely TPS . As shown in (12), when
this happens, the PS decides whether to update the global
model or not, depending on the backlog of local models
retained by the MQTT broker. In particular, the Retain Flag
of the MQTT protocol is set to true so that the last message
sent by the MN is stored into the MQTT broker: when
the PS (or another client) subscribes to the same topic, the
broker delivers the message. In what follows we highlight
4 selected architectures: notice that three of them are based
on the PS a/synchronous orchestration, while the last one
supports the fully decentralized FL tools and the consensus
process.

1) PS SYNCH., CLIENT SYNCH. (PS-S/C-S)
The architecture, represented in Figure 3b corresponds to the
vanilla FL implementation proposed in [4], [8]: both the
PS and the clients are synchronous (S) with respect to
the training process, therefore all network elements share a
common sense of time, while the FL process is supervised
by the MQTT broker. The PS waits until all the clients
complete their model optimization steps, and monitors the
PS weights topic on the MQTT broker. Once all clients have
published their weights, the PS is unlocked and implements
the aggregation step as in (6). After the PS has published the
updated global model, the clients are unlocked and the PS
returns to wait.

2) PS SYNCH., CLIENT ASYNCH. (PS-S/C-A)
As described in Figure 3c, the PS keeps the same synchronous
behavior as in the PS-S/C-S architecture. On the other hand,
the clients adopt asynchronous (A) actions: when their model
optimization step is completed, they might continue the
training using local data unless the PS global model is
updated. In such case, they stop the local model optimization
step and replace the local weights wk,t with the updated
global model wG,t .
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FIGURE 3. FL architectures: from left to right PS-S/C-S, PS-S/C-A, PS-A/C-A and C/C-A. Red color indicates a synchronous element (client or PS) and its
implications. On the contrary the asynchronous element is depicted with green color.

3) PS ASYNCH., CLIENT ASYNCH. (PS-A/C-A)
The last type of PS-based architecture is pictured in Figure 3d.
In this case, both the PS and the clients are asynchronous (A).
On every TPS sec., the PS collects the local model weights
from the MQTT broker and updates the global model even
though not all clients have finished their model optimization
steps. The clients are also asynchronous and act similarly as
in the PS-S/C-A architecture.

4) CONSENSUS-DRIVEN (NO PS), CLIENT ASYNCH. (C/C-A)
The architecture supports the consensus-based (C) FL and
coordinate the local model exchange among the clients.
As illustrated in Figure 3d, the implemented architecture
is fully decentralized while every client is asynchronous.
The clients can communicate directly with each other
uploading and downloading the updated local model weights
from the MQTT broker through the specific topics of the
neighbors. In particular, the MQTT broker acts as a bridge
allowing the communication among interconnected MN,
i.e., possibly located in different countries, and according
to an assigned connectivity matrix. When a client has
finished its round, it downloads the weights of its neigh-
bors, updates the local model according to a specified
algorithm (i.e., the CFA described in Sect. II), and in
turn publishes the updated local model on its weights
topic.

V. CASE STUDY: DIAGNOSTIC IMAGING FOR BRAIN
TUMOR SEGMENTATION
The study and validation of the proposed architecture and FL
tools is performed on a federation of 5MNs distributed across
Europe. As detailed in Sect. III, we selected the task of binary
segmentation of brain tumors (and tumor-like pathologies)
in the axial slice-based single-channel FLAIR MR images
to concentrate our effort on the challenge of implementing a
networking and computing environment in a realistic clinical
setting. The FL process and model quality are verified first

using the BraTS public data repository (BraTS 2018), next
we analyze a more realistic set up featuring an additional
real-world clinical data set of images not prepared ad-hoc for
testing. Such new dataset is referred to as ‘‘Athens set’’ and
it is used to complement the federation with additional MNs.
Finally, validation on the BraTS 2020 set is also considered.
For all setups, the model quality, here also referred to as
performance level, is measured in terms of DSC metric
defined in (11).

The approach we follow for the analysis is threefold.
First, the data pre-processing pipeline (Sect. V-A) targets the
harmonization of BraTS and Athens sets. All the proposed
FL network orchestration mechanisms, namely the PS-S/C-S,
PS-S/C-A, PS-A/C-A, C/C-A, are then compared with the
benchmark centralized ML (Sect. V-B) with respect to
the DSC metric. In particular, the parameter server sleep
time TPS is optimized for asynchronous FL, targeting the
PS-A/C-A architecture. Finally, we analyze the performance
in a practical scenario where FL is implemented on het-
erogeneous medical nodes located in Italy and Switzerland
(Sect. V-C). For these last experiments, we consider different
combinations of training and validation sets quantifying for
each case the benefits of federation.

A. DATASETS AND DATA PREPARATION
To verify the performance of the proposed FL tools and
architectures we first populated 4 MNs, located in differ-
ent countries, with shards from publicly available BraTS
2018 and BraTS 2020 datasets [21]–[23]. The division of
BraTS dataset into training and validation sets was performed
on a per-examination basis, so all slices from one examination
ended up in the same set. The number of examinations
and slices per node can be seen in Table 1. In particular,
BraTS 2018 dataset was splitted into three shards (namely
MNs 1, 2, and 3), and the new examinations from BraTS
2020 (added on top of BraTS 2018), were used for the last
client (MN 4).
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TABLE 1. Distribution of BraTS datasets across three different FL clients.

TABLE 2. Size and distribution of Athens’ dataset into training, validation
and testing sets.

As previously mentioned, to complement the federation
with additional nodes and training data, we considered
a new private dataset (Athens dataset) consisting of 48
MRI examinations, out of which 26 contain abnormalities,
and the rest 22 are normal, serving as negative control in
the experiments. Similarly as for BraTS, the examinations
were divided into training and validation sets on the per-
examination basis. The setup has been designed purposely to
cope with harmonized, but significantly different, data across
nodes. The new dataset is hosted in theMN labelled as 5while
the total size of the dataset and the portions belonging to
training and validation sets are depicted in Table 2. Hardware
specifics and computing capabilities of the 5 deployed clients
are further detailed in Table 3.

1) BRATS VS. ATHENS SET
Besides the fact that images in Athens and BraTS datasets
come from different sources, they differ also in few other
critical aspects. First, Athens data consist of raw samples
as they come out of the MRI machine, without any skull-
stripping or transformations. On the other hand, BraTS
images are already pre-processed: they are all registered
to the common atlas, interpolated and subsampled to an
uniform resolution 1 mm3 in all three main axes in 3D.
Furthermore, BraTS collection contains only examinations
with abnormalities, while in the Athens dataset there are
also normal examinations (healthy patients) and a wider
range of oncological cases w.r.t. the shape, position and
typology. Finally, BraTS dataset contains only high- and
low grade gliomas (HGG and LGG), while Athens examples
feature also metastatic and smaller tumor-like lesions (see the
examples in Fig. 4).

2) DATA HARMONIZATION AND AUGMENTATION
To harmonize the BraTS and Athens inputs, so that the data
of all nodes can contribute to model training, we employed
few normalization steps in the data processing pipeline.

FIGURE 4. Representative images from BraTS (A) and Athens’ (B, C, D)
datasets: A) large detection with surrounding edema in the left
hemisphere from BraTS 2020; B) similar case in right symmetrical
position from Athens’ data set; C) small detection on the left semi-oval
centrum, and D) normal examination.

First, Athens images are resampled to the spatial resolution
of 1 mm2, so that the spatial dimensions are compatible
with BraTS samples. Then, the intensities of each slice
are standardized (i.e., transformed such that the mean
intensity is 0 with standard deviation 1). All slices are then
clipped or padded to obtain images with uniform dimensions
240× 240 pixels. Because the BraTS dataset contains more
fine-grained segmentation labels (marking individual parts
of the tumors) compared to what we needed, we merged all
labels together to produce awhole-tumor segmentationmask.
On top of the harmonization of the input data, we employed
also a data randomization step that consists of randomized
transformations like image flipping, rotations and elastic
deformations. Input images are also altered by adding
Gaussian noise. This process helps to de-correlate the training
samples and in turn improve the robustness of the model
against overfitting. It is worth to mention that higher spatial
resolutionMRIs provide critical anatomical features that help
to better detect illness and make diagnoses. Unfortunately,
High Resolution (HR) MRIs are hampered by extended
scan times and low signal-to-noise ratio (SNR), especially
when hardware capacity is restricted. Consequently, often
Low Resolution (LR) images are taken. Recent research has
shown that using CNNs and single image super-resolution
(SISR) techniques, HR imagesmay be reconstructed fromLR
ones [61].
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TABLE 3. Medical Nodes hardware and computing capabilities.

B. ASSESSMENT OF NETWORK ARCHITECTURES
In the following initial tests, we deployed 4 clients co-located
with the Milan site 1 (hardware specifics are detailed in
Table 3). Three clients use training data from the BraTS
2018 while the remaining one uses the Athens dataset.
In addition, the FL model quality is validated with both
Athens and BraTS validation sets and assessed using the
DSC metric (11). This is obtained by averaging the DSC
metric over the full validation dataset in each MN. For real-
time evaluation of the FL process, the hardware platform
hosting each client has been adapted to use 4 GB of GPU
memory and about 3.5/4 GB of RAM. To optimize memory
usage, we adopted the TFRecord binary format and only a
suited number of training samples were kept in memory:
about 1000 training slices for shuffling reasons. Regarding
the training parameters, we set the number E of local epochs
to 1, for the reasons described in Section II-B, and the
batch size B to 16. The learning rate of the Adam optimizer
was set to 10−4, while the β1 and β2 hyperparameters are
fixed respectively to 0.9 and 0.999. The validation phase is
performed by each MN on its validation set after receiving
the global model by the PS. This validation step provides for
a more accurate tracking of model quality improvements over
time.

In Figure 5 we compare the DSC of PS-S/C-A and the
PS-A/C-A architectures at different clock times and by
varying the server sleep time TPS . The optimal choice of the
sleep time depends on the minimum/maximum local round
time between each client, defined as:

TMAX = max
k

Tround (k)

TMIN = min
k
Tround (k). (15)

As highlighted in the corresponding scenarios, setting
TPS < TMIN improves the training time of the PS-A/C-A
architecture: in particular, it reaches a target DSC of
0.85 while saving the 20% of the training time compared
with the synchronous PS-S/C-A option. On the contrary,
performance drops are observed when TPS >= TMIN ,
specifically regarding the final DSC that worsens from
0.878 to 0.865. For what concerns the PS-S/C-A architecture,
setting TPS <= 2 TMAX (blue area), gives the worst
performance. This result can be due to the fact that in the PS-
S/C-A architecture, the clients perform toomany local rounds
before the aggregation step and this can lead to a bias in the
training process. Finally, for the same reason, we can observe
that increasing too much TPS (red line) is detrimental and not
useful.

FIGURE 5. Comparison between PS-S/C-A (blue areas) and PS-A/C-A (red
areas) architectures for varying TPS . The plots report the observed DSC at
different clock times. Highlighted scores of 0.878, 0.865 and 0.85 produce
different prediction images (as analyzed in Figure 6).

FIGURE 6. Qualitative representation of performance at convergence in
Figure 5. From top to bottom, the predicted images reached a DSC metric
of respectively 0.878, 0.865 and 0.85. These values correspond to
prediction by, respectively, PS-A/C-A with TPS < TMIN (image a), PS-A/C-A
with TPS >= TMIN (image b) and PS-S/C-A (image c). Red circle highlights
the main detection difference in the upper part of the tumor.

Besides performances as measured by DSC and training
time, in Figure 6 we analyze the tumor segmentation quality
by visual inspection and considering the final DSC reached
by the FL architectures PS-S/C-A and PS-A/C-A after
4 · 104 seconds of training. Although the DSC metric is
above 0.85 for all cases, the trained models in Figure 6a
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FIGURE 7. Comparison among all architectures. The centralized ML
benchmark is highlighted with a thick solid black line, while the fully
decentralized FL architecture (C/C-A) is in dashed line. The three
server-based FL architectures are in blue lines with different markers.

and 6b are able to detect the upper part of the tumor
as they achieve a DSC of 0.878 and 0.865, respectively.
On the other hand, the model in Figure 6c cannot, since the
corresponding DSC is only 0.85. This example is critical
to understand how even a small increase on DSC can
significantly improve the predicted image, as well as the
segmentation precision/quality.

Considering the same settings described previously,
in Figure 7 we investigated the differences among all
the proposed FL architectures when compared with the
benchmark centralized ML case. The C/C-A architecture
replaces the PS in exchange for slower convergence time
compared with server-based FL policies (i.e., PS-A/C-A).
However, it reaches comparable dice whole metric above
0.85. The performance of the PS-S/C-A scheme is worse
than the fully decentralized C/C-A: the heterogeneity of
the datasets suggests the use of an asynchronous PS with
TPS < 2 TMAX . Compared with synchronous FL, the asyn-
chronous PS-A/C-A architecture, with TPS < TMIN , obtains
the best tradeoff between performances and training time.

C. IMPACT OF HETEROGENEOUS NODES AND
VARYING DATA SETS
In this section we target practical setups where the MNs are
located in different countries. Nodes are also equipped with
varying computing capabilities, according to Table 3, and
communicating over the Internet. The goal is to highlight the
robustness of the FL process in handling both data and client
heterogeneity. The proposed setups also verify how trained
models via FL can be updated and transferred to newcomer
MNs bringing new data to the process. In what follows,
we adopted the PS-A/C-A architecture by keeping the same
server sleep time TPS = 127 seconds, as optimized in the
previous section. The local round time of the clients varies
depending on the physical machine, namely the hardware and

TABLE 4. Results of the real-time remote experiments with the PS-A/C-A
FL architecture and TPS = 127 s. MN are described in Tables 1 and 2, sites
(s.) in Milan (M.) and Geneva (G.) and corresponding hardware are in
Table 3. For each of the three experiments (Tables a-b-c), we describe in
the upper sub-table the different compositions of the MNs according to
their physical sites and the round time Tround . The lower sub-table
reports TMAX and TMIN values along with the time required to achieve a
DSC of 0.85 and the DSC reached after 5 · 104 s.

the computing capability. We also used the same number of
clients and dataset distributions.

As described in Tables 4a-4b-4c, we performed 3 tests
using MNs 1, 2, 3 and 5 in different sites. A visual repre-
sentation of test number 3 (Table 4c) indicating the specific
MNs locations and corresponding dataset distributions can be
found in Figure 8. Each MN is characterized by a different
time round Tround , while the corresponding TMAX and TMIN
(15) values are reported for simplicity. For each test, we also
reported the time required to achieve a target DSC of 0.85,
and the DSC reached after a training period of 5 ·104 seconds
(corresponding to about 800 rounds). Considering the time
required to reach a DSC of 0.85, we can notice that having
a low TMIN leads to higher performances especially in the
first part of the training process. This is due to the fact that
the MNs with large computing capability can perform several
local rounds between two global model updates, thus refining
the local model. On the other hand, the higher DSC reached
after a period of 5 · 104 seconds is achieved only by test 1
(Table 4a) that has the optimal server sleep time: TPS < TMIN .

In the last experiment, we analyzed a further setup where
the MN labelled as 4 in Table 1 joins the federation.
In particular, the new node contains examples drawn from
the BraTS 2020 set and is located in the Milan site 1
(Table 3). The purpose of these tests is to verify the robustness
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FIGURE 8. Geographical representation of Test 3 of Table 4. The MNs (i.e., the datasets) are also described in Tables 1.

TABLE 5. FL performances with 12 different training/validation set combinations ranging from BraTS 2018, BraTS 2020 and the new Athens dataset.
Cross-markers indicate, for each case, the training sets and the corresponding validation examples on which the DSC (second-last column) is computed.
The dimension of the total MRI training datasets is reported in the last column in terms of number of slices (of size 115 KB). Max and min values of
validation DSC for each dataset are highlighted in green and red, respectively. Notice that the MN 1-2-3 (Table 1) are grouped together in BraTS 18 for
brevity.

of FL, in terms of DSC, for varying combinations of
training and validation sets chosen from the BraTS 2018,
the BraTS 2020 and the Athens data previously described.
In Table 5, we compared the observed DSC after 800 FL
rounds (corresponding to approx. 5·104 seconds) considering
all possible combinations of training and validation sets,
as indicated by the corresponding markers. In particular, the
first three cases (rows 1, 2 and 3) correspond to single node
training where the MN uses only its local data for learning
(namely BraTS 18, BraTS 20 or Athens), without joining
the federation. The following six cases (rows from 4 to 9)
highlight the training performance observed when 2 to 4MNs
share their model parameters in the federation. Finally, the
last three cases (rows 10, 11 and 12) show the performance of
a federation of 5 MNs using all the available datasets (42323
MRI slices) and different validation examples. We can notice
that in general, if a MN joins a federation (of 2 to 5 MNs),

the DSC increases as expected. Although improvements are
numerically small, they provide a significant increase of the
predicted image segmentation resolution, as closer to the
ground-truth (see also the examples of Figure 6).With respect
to single node training, the DSC increases on average by 1%
considering a federation of 4 MN, and scales up to 1.6%
when all the training sets are considered (5 MNs). Notice
that further improvements are expected by replacing the
current U-NET model with more complex options [24], [26],
as well as increasing the number of deployed MNs,
in exchange for larger training time. Looking now at the
training datasets, we can observe that the major performance
improvements occur when theMNs retaining BraTS data join
a federation with other MNs holding training samples with
similar characteristics (BraTS 2018 or 2020): see cases 2,
6 and 3, 7. Interestingly, a MN that joins the federation
and brings samples from the Athens set provides further
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improvements, estimated as 0.6% on average, see cases 6,
10, and 7, 11. This last observation is noteworthy because
even with all the differences described in Section V-A and
with the fewer examples/slices of Athens dataset, the increase
of DSC is significant. FL performance improvements with
increasing dataset size, i.e., from one to three datasets as
in cases 2, 10 and 3, 11, can reach up to 1.7%, while the
benefits of joining the federation are evident. From a different
perspective, excludingMNs from the federation, even though
they exhibit straggler-like behaviors, is not recommended
since the global model might lose its ability to generalize, i.e.,
being less adaptive to new data. Finally, it is worth noticing
that the DSC on the Athens validation dataset seems to be
little influenced by the MNs holding the BraTS sets (cases 1,
4, 9 and 12). A cause of this could be the fewer validation
slices or the different initial resolution of the Athens dataset.

VI. CONCLUSION: OPEN CHALLENGES AND
FUTURE ACTIVITIES
The paper proposed federated and decentralized learning
tools to support smart healthcare networks and medical
diagnosis. An example of implementation was given in the
context of brain tumor segmentation. Parameter server (PS)
based federated learning (FL) and fully decentralized FL
tools relying upon average consensus have been implemented
on top of the MQTT transport protocol, while different
network architectures and related designs were proposed
to exploit synchronous and/or asynchronous coordination
among the clients and the PS, when used. In particular,
leveraging distinct levels of asynchronicity on the clients
was found as a more efficient option in the presence of
heterogeneous nodes and data, as letting the medical nodes
to fully explore their local examples before publishing their
updates. Asynchronous consensus is also a good-compromise
between resource utilization and performances. The proposed
architectures were extensively tested on medical data com-
posed of heterogeneous datasets from public and private
sources, demonstrating first of all the advantage of the FL
system on the centralized training, and furthermore, the main
benefits of the MQTT protocol when it comes to reliability,
bandwidth efficiency and scalability.

The applications of FL for healthcare and automatic
diagnosis are expected to quickly mature in the coming
years targeting robust, scalable and privacy-preserving health
services. In particular, distributed learning is expected to
realize larger-scale and collaborative healthcare systems
possibly opening to fully decentralized diagnosis operations,
as opposed to centralized analytics on data centers. Besides
the promising opportunities highlighted by the paper, future
developments of FL are expected to address the robustness of
classical and decentralized tools against adversarial manipu-
lations and data poisoning. In addition, the trained models
typically observed in medical applications have very large
size, ranging from 30 and up to 150MB [62] permedical node
and learning round: when the FL process is implemented over
wireless channels, the communication bottleneck should be

carefully addressed, possibly via quantization, compression
and model updates sparsification. As highlighted in the case
study, excluding slow medical nodes (stragglers) from the
federation is also not recommended in healthcare networks
as these might be fundamental to improve model general-
ization. Trade-off solutions should be therefore investigated.
A properly designed FL system can obtain performances
meeting the needs of healthcare professionals. Nevertheless,
a quantitative evaluation of trustworthiness metrics is also of
fundamental importance to ensure the robustness of the FL
platform.
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A Traffic Model Based Approach to Parameter Server
Design in Federated Learning Processes

Bernardo Camajori Tedeschini , Graduate Student Member, IEEE, Stefano Savazzi , Member, IEEE,
and Monica Nicoli , Senior Member, IEEE

Abstract— This letter proposes a model to describe the data
traffic generated by a Federated Learning (FL) process in
a wireless network with asynchronous Parameter Server (PS)
orchestration and heterogeneous clients. The model accounts for
the local update processes implemented by individual clients
and it is used to enforce requirements on the PS design,
namely to regulate the interval among consecutive global model
updates. PS requirements are validated on realistic pools of
resource-constrained wireless edge devices, typically found in
Internet-of-Things (IoT) setups. Numerical results show that
the proposed policy is effective when devices have unbalanced
resources, namely, different sample distributions and computa-
tional capabilities. It permits an accuracy gain of up to 15-17%
on average with respect to typical asynchronous PS designs.

Index Terms— Federated learning over networks, traffic mod-
elling, edge devices, computing.

I. INTRODUCTION

FEDERATED Learning (FL) enables resource-constrained
edge devices to cooperate over a network for training a

shared Machine Learning (ML) model. It protects data owner-
ship by ensuring that the observations used for training never
leave the device responsible for its production. As depicted in
Fig. 1, FL alternates the computation at each device of local
model parameters, i.e., the weights of deep neural network
layers, with the communication to a Parameter Server (PS)
that fuses the local models and returns a global model [1].
Different FL implementations [2] and enablers [3] emerged in
the past few years. Most applications call for geographically
distributed [4] and heterogeneous clients with different tempo-
ral alignments. In many cases, an asynchronous orchestration
of the FL process is also a prerequisite, especially in next
generation networks.

Current state-of-the-art on asynchronous FL strategies
mainly have the following limitations. First, in vanilla algo-
rithms, the PS updates the global model as soon as a local
model is received [5], with no regard to client-specific resource
constraints. This can lead, for example, to biased updates from
faster clients. Secondly, the update at the clients is not opti-
mized as the number of local epochs is usually fixed and not
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Fig. 1. FL system with heterogeneous and asynchronous clients. Optimized
TPS takes into account the local model update completion time of the clients.
Top-right corner: model composition for the experiments.

tuned according to the type of traffic or the quantity/quality of
the data [6]. The letter proposes a moment-matching approxi-
mation to represent the traffic generated by clients engaged in
an asynchronous FL process. The model is validated through
a real FL prototype consisting of physically separated clients
implementing distributed training over a wireless network,
using the Message Queuing Telemetry Transport (MQTT) pro-
tocol. Besides adapting and formalizing the moment matching
technique to the context of FL, the letter provides the necessary
requirements on the time interval among consecutive global
model updates, namely the server response time TPS . This is
used by the PS to decide whether to update the global model
or not, depending on the backlog of local models retained by
the clients. The proposed requirements account for the traffic
type, the local data size, quality, and the channel impairments
affecting the FL local round time.

The letter is organized as follows. Sect. II introduces the
proposed traffic model for asynchronous FL. The model uses
the moment-matching approximation and permits to categorize
the traffic of each client using the dispersion index (D) metric.
Requirements in Sect. III exploit the proposed model to define
operational points that regulate the clients and the PS behavior,
while Sec. IV describes a practical policy for TPS selection
that fulfills the proposed requirements. The policy is validated
through a real-time FL platform prototype.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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II. FL DATA TRAFFIC MODEL

We consider a FL system composed of one PS and a set of
K clients K = {1, . . . ,K}, each with its own private dataset
Sk of size Sk = |Sk|. As depicted in Fig. 1, the aim of the
FL process is to obtain a global ML model, of size G, that
minimizes a loss function wG = argminw L(w) with L =
1
K

∑K
k=1 Lk(w,Sk) and Lk being the local costs measured

by clients using the data batches Sk. The FL process requires
the clients to produce local models through optimization,
typically via supervised and gradient-based methods. Each
client k performs M(k) local epochs before exchanging the
local model with the PS, which is in charge of the global
model update.

In asynchronous FL, the PS produces a new instance of the
global model wG,t at time t = nTPS , n = 1, . . . , NFL [4]:

wG,t = (1− ϵt)wG,t−TPS
+

ϵt∑K
l=1 Sl

K∑

k=1

Skwk,t−Tk
, (1)

where wk,t−Tk
represents the k-th local model available at

time t−Tk, Tk ≥ 0 is the time interval required by the client k
to produce an updated local model, while TPS regulates the
time span between two global model updates. n ≤ NFL is the
index of the federated rounds. Finally, ϵt controls the stability
of the update. Considering that clients may have different
computing capabilities and datasets, the associated network
traffic can vary significantly depending on Tk. A client-specific
characterization is thus proposed to model the local model
update process and identify the corresponding traffic pattern.

For the exchange of the NN model parameters among
the clients and the PS, we propose to employ the MQTT
protocol [7] as it enables a real-time exchange of the model
parameters and allows the monitoring of the client training
time required for TPS tuning. The time required by a client k
to implement a local round can be broken down into the
time span to download the weights (Tdown), train the new
model for M(k) epochs using local data batches (Ttrain),
encrypt, compress and upload the weights, i.e., to the MQTT
broker, (Tup):

Tk = Tdown(k) +M(k) · Ttrain(k) + Tup(k). (2)

These quantities can be computed locally by each client,
through standard time measurement functions, and permit
to separate the contribution of computing capabilities (Ttrain)
from possible channel disturbances affecting uplink (UL) and
downlink (DL) communications (Tup, Tdown).

Based on the above assumption, we introduce a model to
approximate the probability density function pTk

(Tk) of the
traffic pattern generated by each client k. A moment-matching
approximation is employed which divides the process into
three categories: Bernoulli, Poisson, and Pascal [8]. We clas-
sify the traffic into one of these categories by matching the
first two moments defined respectively as:

A(k) = En[Tk],
σ2(k) = En[(Tk −A(k))2], n ∈ {1, . . . , NFL}. (3)

The Dispersion Index (D), also called Variance to Mean Ratio
(VMR), is:

D(k) =
σ2(k)

A(k)
, ∀k ∈ K. (4)

According to the moment-matching technique, we can obtain
a Poisson traffic by setting D(k) = 1, i.e., by imposing
a regular traffic pattern. On the contrary, burst-traffic, i.e.,
Pascal, and smooth traffic, i.e., Bernoulli, are obtained with
D(k) > 1 and D(k) < 1, respectively. Based on the above
metrics, in the following, we give upper and lower bounds on
the characteristics of the PS, especially regarding the TPS .

III. MINIMAL REQUIREMENTS ON CLIENTS AND TPS

The choice of the server response time TPS is underpinned
by the local model update process running on each client,
therefore by the number M(k) of epochs that directly reflects
on the dispersion index D(k) in (4). Low values of M(k)
correspond to frequent contributions of the clients to the
global model, at the expense of an increased communication
overhead, and possibly non-informative local model updates.
Conversely, large M(k) forces the client to implement many
local epochs and possibly produce a biased local model
(penalized by overfitting).

Optimal M(k) should be bounded as ML(k) < M(k) <
MU (k). The lower bound ML(k) sets the minimum M(k)
such that the client local model can improve the FL process
while satisfying the communication overhead constraints. The
upper bound MU (k) is the maximum M(k) before the client
starts overfitting. Note also that ML(k) is limited by UL
and DL maximal communication efficiency ηMAX [bit/sec/Hz]
dedicated to the link between the PS and the clients, with band-
width B. Being TFL = NFLTPS the FL training duration,
it is:

TFL
A(k)

G ≤ ηMAXBTFL. (5)

This leads to the following:

ML(k) = En
[

1

Ttrain(k)

(
G

ηMAXB
− (Tdown(k)+Tup(k))

)]
.

(6)

Note that MU (k) depends mainly on the size of training data
and the local model, since more data (or small sized models)
require more local epochs for overfitting. For client k, and
wk,m being the local model observed at local epoch m ∈
{1, . . . ,M(k)}, MU (k) is assigned as:

MU (k) = argmin
m

Lk(wk,m,Sval
k ), (7)

where Lk(wk,m,Sval
k ) is the validation loss computed by

client k on the validation dataset Sval
k at epoch m.

As shown in the next section, the choice of M(k) affects
TPS and can be used to set practical bounds on global model
updates. On one hand, small M(k) such that M(k)≪ML(k)
might result in TPS ≫ A(k) thus exceeding the constraint
on the spectral efficiency, with negligible effect on the FL
process and accuracy. On the other hand, performing sporadic
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Fig. 2. In orange, red and green the probability density function
pTk

(Tk) of a client with hardware ARM-Cortex-A57 SoC, GPU: 128-core
Maxwell (Jetson Nano model, i), ARM-Cortex-A72 SoC (Raspberry pi4,
ii), ARMv8-Cortex-A53 SoC (Raspberry pi3, iii), respectively. With dotted
black line we represent the log-normal distribution that fits the real probability
density function of Tk . M(k) is set to 2 and the model size S is 51 KB.

global model updates, namely M(k) > MU (k), might produce
biased local models when TPS ≪ A(k). These could nega-
tively contribute to the FL process by either slowing down
convergence, reducing the accuracy [9] or possibly preventing
the device to complete the local round [10].

IV. PS DESIGN PRINCIPLES AND VALIDATION

This section proposes a policy to regulate the PS response
time TPS based on the knowledge of the client dispersion
index D(k), the dataset Sk size and possible conditions
on local overfitting. The proposed policy is validated in
two scenarios where clients are characterized by different
traffic patterns, namely varying computing capabilities, and
non Independent and Identical Distributed (non-IID) datasets.
Validation is based on a FL platform prototype.

A. FL Network Platform and Traffic Modelling

Fig. 2 provides a validation of the proposed client-specific
traffic modelling approach based on moment matching.
We consider a realistic pool of resource-constrained devices
equipped with: i) CPU ARM-Cortex-A57 and GPU 128-core
Maxwell (Jetson Nano model [11], orange), ii) CPU ARM-
Cortex-A72 SoC (Raspberry pi4, red) and iii) CPU ARMv8-
Cortex-A53 SoC (Raspberry pi3, green). For each client,
we collected measurements of local round times Tk to obtain
the sample probability functions pTk

(Tk). Notice that each
client is connected via WLAN to a router which forwards
the MQTT packets to the PS. The traffic parameters Tk and
D(k), are computed directly by clients at the end of each
local round and then sent through a dedicated connection to
the PS. The measured statistics pTk

(Tk) are thus reliable and
realistic as they are independent from the PS hardware or
from the FL processing. As evident from Fig. 2, the local
round time distributions are well approximated by log-normal
(dashed lines) with mean and standard deviation of 1/0.07,
3.4/0.2 and 10/0.3 for clients i), ii) and iii), respectively.

The goal of the following tests is to analyze the impact
of client heterogeneity on PS response time TPS . Based on
experiments in Fig. 2, we simulate different execution times
of the local rounds according to the log-normal model.

Algorithm 1 TPS Policy
1: procedure POLICY(S train

k ,Sval
k ) ▷ Run on client k

2: Initialize wk,0, M(k)← 1 ▷ Epoch 0
3: Train local model using S train

k

4: Compute D(k) with (4)
5: Compute ML(k) with (6), MU (k) with (7)
6: Compute performance metric: P = P(wk,MU (k),Sval

k )
7: M∗(k)← max(F [D(k), P ],ML(k))
8: T ∗

k ← Tdown(k) + M∗(k)Ttrain(k)+Tup(k)
9: Return T ∗

PS(k)← A∗(k) = En[T ∗
k ]

10: end procedure

B. Client-Specific Policy for the PS Response Time

The choice of the PS response time TPS must take into
account both the traffic model of Sec. II and the requirements
of Sec. III. The optimal server time T ∗

PS corresponds to a
value M∗(k) bounded by ML(k) and MU (k). The main idea,
shown in Algorithm 1, is that each client computes its own
optimal M∗(k):

M∗(k) = max(F [D(k), P ],ML(k)), (8)

where F is a policy function. Function F takes as input the
local accuracy P and the traffic type D(k). It can be written
analytically as:

F [D(k), P ] = Qk(γP )− C ·D(k), (9)

where Qk(γP ) =
{
m : P(wk,m,Sval

k ) = γP
}

is the num-
ber of epochs that corresponds to a validation accuracy of
γP , and P(.) is the cross-entropy accuracy function. P =
P(wk,MU (k),Sval

k ) is obtained at local epoch MU (k), C > 0 is
a constant (see Sec. IV-C) and 0 < γ < 1 is a hyper-parameter.
Optimal M∗(k) is bounded as M∗(k) ≥ ML(k) from (8),
and M∗(k) ≤MU (k) which follows from (9), since C ·D(k)
is a positive term and Qk ≤MU (k) as γP < P .

By replacing M∗(k) in (2), each client derives the PS time
T ∗
PS(k) = A∗(k) using the device-specific parameters MU (k),
ML(k) and D(k), as well as the training S train

k and validation
datasets Sval

k , respectively, as inputs. The device returns the
T ∗
PS(k) value to the PS which makes a final decision for TPS .

The traffic statistics, the upper and lower bounds, MU (k) and
ML(k), are obtained independently by each client during an
initial training stage using M(k) = 1. The log-normal model
parameters (3) are computed by means of consecutive time
measurements Tk, that account for global model download,
local training and model upload steps as in (2). After the
training stage, we obtain the performance metric P and apply
the policy function F in (8) using P and VMR D(k).

Fig. 3 shows an example of local training, with loss and
validation accuracy P for varying local epochs. Notice that
few epochs are typically sufficient to improve the local model
without incurring in overfitting. Cross-entropy function P
in FL also follows a negative exponential behavior, namely
P ≈ a− e−bm, for m < MU , while for such case γ = 0.5 is
found as reasonable (see Sec. IV-C). With the proposed policy
we avoid the overfitting region, transferring at the same time
a great portion of local information. The term C ·D(k) in (9)
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Fig. 3. Example of validation accuracy (blue) and loss (red) during local
model training on a client. MU (k) and M∗(k) values are highlighted together
with accuracy P and γP (γ = 0.5) respectively. Solid and dotted lines are
obtained with 100% and 10% of the training dataset (of size Sk). Note that
overfitting is expected, as the local training process uses few training samples.

accounts for the traffic variance. Intuitively, a high variance,
as a result of a client with varying computing resources,
might increase the probability of observing high local training
intervals (slow client). For such scenario, choosing a low value
of M(k) allows the PS to process the client local model
updates more often and compensate for this effect.

The PS collects the optimal T ∗
PS(k) computed by

Algorithm 1 and derives the response time to be used for all
clients. Considering the previous analysis, this is obtained as:

T ∗
PS = min

k
T ∗
PS(k), (10)

with the requirements on the efficiency already satisfied by
T ∗
PS(k) since ML(k) ≤M∗(k) ≤MU (k),∀k.
In the following, we explore two scenarios in detail. In the

first one, the clients are homogeneous as featuring the same
VMR D(k), M∗(k) and Ttrain(k). In the second scenario, the
clients are heterogeneous and organized into two clusters (C1

and C2). Clients in each cluster k ∈ Ci have similar computing
power/capabilities, namely A(k) = Ai, σ2(k) = σ2

i and VMR
D(k) = Di, ∀k ∈ Ci corresponding to the same processing
unit, and TPU, if any. Accuracy improvements obtained by
following the policy (10) are assessed in both cases.

C. Experimental Assessment

For the experiments, we consider the CIFAR10 [12] dataset
using the full validation data and a local training set of
Sk = 500 images for each of the K = 9 clients. Policy vali-
dation is based on a real-time FL platform prototype featuring
physically separated clients (here Jetson Nano devices). The
approach adopted for modelling the client heterogeneity is
twofold. First, we used an additive delay whose log-normal
distribution fits the observed completion times in Fig. 2.
Second, the training data is non-IID distributed. To sim-
plify the analysis, the data size is the same for all clients
(as typical in FL). The prototype consists of devices connected
via WLAN to the PS, thus permits to quantify the impact

TABLE I
HOMOGENEOUS CLIENTS AND NON-IID DATA. OPTIMAL T ∗

PS AND
M∗(k) FOR VARYING A(k), D(k), η/ηMAX (%), AND

CORRESPONDING ACCURACY IMPROVEMENT (%)
W.R.T. VANILLA ASYNCHRONOUS FL

of communication impairments. The adopted FL algorithm is
FedAvg [9] while Adam [13] is used as local optimizer with
default hyper-parameters. The ML model is described in Fig. 1
and consists of 105 parameters with size G = 2.53 MB. Loss
and performance metrics are the categorical cross-entropy and
categorical accuracy, respectively. For each considered case,
the validation accuracy is evaluated after TFL = 800 seconds.
Considering the communication with the PS, the bandwidth is
B = 40 MHz while the max. efficiency dedicated to FL is set
to ηMAX = 0.05 bit/sec/Hz. MQTT publishing uses Quality
of Service (QoS) level 2 as this permits re-transmissions in
exchange for larger Tup(k) and Tdown(k).

As previously described, the FL process starts with a client
local training to find MU (k) and subsequently M∗(k) and
T ∗
PS(k) according to Algorithm 1, with γ = 0.5. C = 0.2

adapts the VMR D(k) contribution in (9) to the considered
traffic types. Fig. 3 shows the validation loss/accuracy versus
the local epochs that are used to retrieve MU (k) and M∗(k)
from (7) and (9). For clients with training data size Sk, the
optimal M∗(k) is 6 epochs. Setting now the training size
to 10%, we observe shifts in the overfitting region (around
MU (k)) according to the bias-variance of the model: now
M∗(k) = 4.

In Table I we consider at first homogeneous clients, i.e.,
clients with the same computing power and traffic distribution,
but with non-IID data (80% of the local samples are drawn
from the same class, chosen randomly). Traffic parameters are
set to vary within the set A(k) ∈ [2, 80] s and σ2(k) ∈
[0.001, 100]. To evaluate the proposed policy, we choose
TPS ∈ [1, 400] s and obtain the empirical optimal TPS for
each type of traffic. Notice that for the proposed example,
setting ηMAX = 0.05, a client with A(k) ≤ 80 s would require
ML(k) = 1. Table I summarizes the results for all experiments
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TABLE II
CLIENTS ORGANIZED IN TWO CLUSTERS (C1 AND C2) AND NON-IID

DATA (SEE TABLE I). THE RATIO η/ηMAX (%) REFERS TO
THE WORST CLUSTER CASE, I.E., LOWER M∗(k)

grouped based on the traffic type (Bernoulli, Poisson, Pascal),
mainly determined by the value of σ2(k). For each experiment,
we highlight the traffic parameters A(k), D(k) (obtained
for M(k) = 1), the resulting optimal T ∗

PS , the correspond-
ing M∗(k) and the fraction (%) of utilized bandwidth w.r.t
ηMAX . Last column quantifies the accuracy improvement w.r.t.
a vanilla asynchronous strategy where the PS updates the
global model as soon as a local model is available.

Considering the Bernoulli distribution (Table I.a) and
D(k) ≈ 0, the optimal values of TPS and M(k), obtained
empirically, are in-line with the model (9), that gives
M∗(k) = 6 for γ = 0.5 and C = 0.2. On the other hand, when
A(k) > 20, namely the clients being all very slow, it is more
convenient to keep the TPS as low as possible, rather than
following the policy (waiting the end of the optimized round).
Increasing D(k), namely using Poisson and Pascal traffic, this
behaviour is less evident as the optimal M∗(k) (4 and 1,
respectively) is now in line with the policy and maintained
for all A(k). To summarize, the policy is effective for the pre-
diction of the optimal values of M∗(k) and can be used to tune
the T ∗

PS when A(k)≪ TFL (see cases highlighted in green).
Table II analyzes a more general case where the clients

belong to clusters C1 and C2 and have different local learning
completion times. Cluster C2 contains much slower clients
compared with C1: the example is thus useful to verify
the proposed policy for TPS and whether the PS should
specifically follow any cluster Ci, or not. To achieve that,
we vary A(k) = Ai=1,2 of both clusters within the set [1, 80] s,

TPS ∈ [1, 400] s and σ2
i=1,2 ∈ [0.001, 100] s2. Cluster C1

contains 5 clients while the remaining 4 clients belong to C2.
The results highlighted in blue show that the optimized TPS
should be set to follow the optimal number of local rounds
M∗(k) of the faster clients. For example, this can be seen in
the extreme case of (A1 = 1, A2 = 80) where the cluster C2

almost does not affect the choice of T ∗
PS . For all the considered

cases, the use of an underestimated value of M∗(k) should be
preferred to prevent overfitted local models. In other words,
it is more beneficial to update more often the global model
following the faster clients, k ∈ C1, as opposed to wait for the
slower clients, k ∈ C2, to complete their round. To conclude,
we observe that designing TPS based on the knowledge of
the client-specific traffic is able to outperform asynchronous
FL strategies. Optimization of TPS is particularly critical for
the case of two clusters. Observed accuracy gain increases
from 5.1% (single cluster), to 15-17% on average.

V. CONCLUSION
The letter proposed a stochastic traffic model to describe

the clients’ behavior in FL processes. The model is based
on the moment-matching approximation and it is verified
with practical resource-constrained devices communicating
with a Parameter Server (PS) using MQTT transport. Traffic
characterization is used to develop a policy for the selection
of the PS response time TPS in asynchronous FL. The
policy satisfies spectral efficiency constraints and avoids FL
overfitting impairments. Results obtained in real setups show
that an accuracy increase of up to 15-17% is possible when
clients exhibit different local model completion times.
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Abstract—The exponential growth of the Internet of Things
(IoT) has created an essential demand for Distributed Machine
Learning (DML) systems. In this context, Federated Learning
(FL) allows IoT devices to collaboratively train models while
maintaining data ownership and privacy. Despite the evident
advantages, FL faces practical challenges such as client selection
and adaptation to heterogeneous data distributions. Recently,
consensus-driven algorithms have been proposed to enable
efficient and scalable FL without a central coordinating entity.
Weighted Average Consensus (WAC) tools, primarily used
in distributed signal processing, fail to address FL-specific
challenges. The paper proposes a new family of server-less FL
algorithms optimized to exploit WAC techniques. In particular,
we propose an evolution of the centralized Federated Adaptive
Weighting (FedAdp) method and present three distinct WAC
schemes specifically designed for non-Independent and Identical
Distributed (IID) data. Each scheme has a unique aggregation
part that optimizes the weights of the clients’ local models. The
performances are evaluated in a real-world IoT system, analyzing
their convergence properties in the context of heterogeneous
client populations. Results show that the proposed algorithms
outperform vanilla consensus FL up to 56% of accuracy and
they are resilient to both label and sample data skewness.

Index Terms—FL over networks, weighted average consensus,
non-independent and identical distributed, edge computing.

I. INTRODUCTION

THE rapid growth of the Internet of Things (IoT) and
the diffusion of devices with increasing computational

capabilities created a significant need for Distributed Machine
Learning (DML) [1]. Federated Learning (FL) is a DML
approach that allows devices to collaboratively train models
while keeping their data local, thus preserving privacy and
security [2]–[5]. In vanilla FL framework, a central entity,
i.e., Parameter Server (PS), coordinates the learning process
among the participating devices, or clients, by aggregating
their locally computed model updates. This technique is
particularly relevant in 5G/6G networks [6]–[8], where devices
can efficiently communicate and share data, enabling a wide
range of applications such as autonomous driving, smart cities,
and advanced healthcare services [9]–[12].
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While FL offers undoubted advantages, it also faces several
challenges that must be addressed to ensure robustness,
efficiency, and security across various application domains
[13]–[15]. These challenges include client-selection [16]–[20],
which involves determining the optimal set of clients to
participate in the training process; energy consumption [21]–
[24], as IoT devices often have limited battery life, calling for
the design of energy-efficient FL algorithms; and incentive
mechanisms [25], which foster cooperation among clients by
rewarding them for their contributions. Additionally, Over-
The-Air (OTA) computations and communications [26]–[28]
require efficient techniques for data transmission and model
aggregation while minimizing latency and bandwidth.

Alongside the aforementioned issues, security remains
a major concern in FL [29]–[31], as the system is
vulnerable to various attacks such as data poisoning and
model manipulation. Another aspect to consider is online
learning [32]–[34], which necessitates algorithms capable
of adapting to dynamic and evolving data distributions.
Furthermore, achieving fast-convergence [35], [36] and
time-efficient asynchronous FL [37]–[40] is crucial for
practical implementation, particularly in scenarios with limited
connectivity or highly dynamic environments. Addressing
these various aspects is essential for unlocking the full
potential of FL and ensuring the successful deployment of
FL-based systems across a wide range of applications.

A. Related Works

One of the main concerns in FL is the non-Independent and
Identical Distributed (IID) data distribution among clients [41].
Indeed, in case of data heterogeneity, traditional methods like
Federated Averaging (FedAvg), which rely on local Stochastic
Gradient Descent (SGD), may struggle to achieve convergence
when the participating devices execute an excessive number of
local updates or have skewed data distributions. To overcome
this limitation, adaptive learning rate strategies [42]–[44] and
smart clustering or pooling techniques [45]–[47] has been
introduced in the last years.

Of particular interest are the works of FedProx [48] and its
variants [36], [49] which employ an inexact proximal point
update for local optimization, i.e., penalizing the deviation
of the local model from the PS global one. While FedProx
is performed individually by each client, other algorithms
focused on developing ad-hoc PS aggregation weighting to
regulate the impact of each local model in the global update.
An example can be found in [50] where the authors developed
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wi,t+1 = ψi,t − η∇Li(ψi,t)

Fig. 1. Comparison of PS and consensus-based architecture in a network with
four clients. The aggregation weights αk,St and αk,Ni,t

are computed and
applied in the first case by the PS and in the second case by each individual
client (node i in the figure).

a Federated Adaptive Weighting (FedAdp) algorithm which
employs PS aggregation weights based on the inner product
between local gradients and the global gradient. Indeed, this
metric can be used as a dis/similarity measure to estimate the
contribution of the local model. Intuitively, the more the local
and global gradients are orthogonal, the less the local model
will positively contribute to the global aggregation.

Recently, a distributed version of FL, known as consensus-
based FL [51]–[54], has been proposed to address some of the
challenges associated with PS-based FL, i.e., with centralized
approaches [55]. As depicted in Fig. 1, differently from PS-
based FL, in consensus-FL, clients collaboratively train models
while also reaching a consensus on the model updates without
a central coordinating entity, which leads to a more efficient
and scalable learning. These techniques have evolved from
conventional distributed maximum likelihood estimation based
on consensus [56], where individual nodes depend exclusively
on their local data and the information shared via connections
with nearby nodes to update their local approximations. In
the simplest version of consensus, i.e., Averaged Consensus
(AC) [57], the model parameters are updated in a synchronized
fashion and with constant or absence of weighting aggregation.
Similar to AC, consensus-FL faces challenges such as

asynchronous and fast convergence [58], [59], as well as
reducing the carbon footprint [60]. To address these issues,
consensus-FL algorithms, such as Gossip FL [61], Consensus-
driven Federated Averaging (CFA) [62], [63], and dynamic
layer selection [64], [65], have been proposed.

In distributed estimation, smarter Weighted AC (WAC) has
been proposed [66] to extend the continuous-time approach
[67] to a general discrete-time vector-parameter estimation
problem. Recently, attempts have been made to apply WAC
algorithms to FL under non-IID data distributions and
network dynamics. For example, in [68], the authors used
simulated clients with label-skewness (each client possessing
data from only one or a few classes) but did not explore
sample-skewness scenarios or conduct experiments involving
real devices. Similarly, in [69], the focus was on label-
skewness with simulations on time-varying topologies, but
again, sample-skewness and real-world network dynamics
were not considered. Moreover, these approaches typically
employ conventional CFA algorithms, where the weighting is
based solely on the number of samples in the local datasets.
Such methods do not account for real network dynamics and
do not exploit the learning contribution of each node when
determining the appropriate weights for model aggregation.
Given the relevance of applications like massive-IoT networks
[53], vehicular communications [70], and industrial networks
[71], where non-IID data distribution and network dynamics
are common, the adoption of WAC in FL systems to handle
these challenges is clearly a research direction to explore.

B. Contribution

The design of adaptive weighting algorithms for PS-
based FL has been extensively studied in the literature and
main challenges can be considered well understood. On the
other hand, transferring algorithms optimized for conventional
FL architectures to a fully decentralized platform (with no
physical PS server) is challenging and partially addressed.
The current literature shows a lack of consensus-based
algorithms specifically designed for non-IID frameworks,
since solutions developed for centralized FL contexts can
not be directly applied to fully-distributed setups. To move
a step forward in this direction, this paper proposes WAC
algorithms designed for decentralized FL setups and under
heterogeneous client populations assumptions. The proposed
solutions extend popular FL techniques, such as FedAdp,
broadening their scope of applicability in distributed contexts,
where the adaptive aggregation of model parameters and
the optimization strategy are performed client-side without a
coordinating PS-part.

In summary, the main contributions are as follows.
• We make a comparative analysis on PS and consensus-

based FL, highlighting the key similarities and
differences, and investigating the main schemes for
centralized weighted FL;

• We propose three different solutions for achieving
weighted FL in decentralized network architectures,
which mainly differ for the aggregation part according
to the local contribution of the neighbors (based on a
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virtual PS, on a selected client or on the local retained
model). To the best of our knowledge, this is the first
attempt to extend conventional WAC techniques to fully-
decentralized FL with consensus;

• We analyze the convergence properties and evaluate
the FL performance on a real platform consisting
of heterogeneous IoT devices. The heterogeneity is
taken into account by introducing asymmetries in both
samples and label distributions, namely sample and label
skewness, and assessed through different models and
datasets complexities.

C. Paper Organization

The structure of this paper is as follows. Section II provides
an overview of PS and consensus-based FL, together with a
description of FL for non-IID local distributions. In Section
III, we describe the weighted consensus algorithms, i.e., WAC
for FL, detailing the main steps and convergence properties
of the proposed algorithms. Section IV presents details about
the dataset and FL platform, both simulated and with real
IoT devices, followed by a discussion of the numerical results
obtained with different non-IID data characterizations. Finally,
Section V concludes the paper.

II. SYSTEM MODEL

In this section, we first describe the vanilla PS-based
FL tools and the consensus-based solutions for server-less
architectures. Next, we discuss the main existing categories
of FL algorithms for non-IID data.

A. From PS-based to Server-less FL Driven by Consensus

In the framework of FL, we consider a network that includes
one PS and a collection of K clients denoted as K =
{1, . . . , K}. For notation purposes, throughout the paper, we
will indicate with subscripts i and k the indices for the clients
and neighbors, respectively. Each client possesses its own
distinct dataset Di with a size Di = |Di|. The ultimate loss of
the FL procedure is to achieve a global Deep Learning (DL)
model that minimizes a loss function wPS = argminw L(w),
where L(w) = 1

K

∑K
i=1

Di∑
i′∈K Di′ Li(w,Di), Li represents

the local cost determined by client i utilizing the data batches
Di. An iterative process, involving a local model optimization
step followed by an aggregation step executed on the PS, is
used to obtain the global model.

At time (i.e., federated round) t = 1, . . . , NFL, a set St ⊆ K
of clients is chosen to carry out the training procedure. Clients
are required to generate local models via optimization in the
FL process, typically employing supervised and gradient-based
techniques, e.g., Adam optimizer [72], with mini-batch B of
size B and learning rate η. Each client i ∈ St performs E local
epochs prior to exchanging the local model with the PS, which
is responsible for updating the global model. In the vanilla FL
using PS, i.e., FedAvg, the aggregation step is conducted using
a weighted average based on the number of samples Di from
each client:

wPS,t =
∑

i∈St

αi,Stwi,t, (1)

where wPS,t is the PS global model, wi,t is the local model
of client i and αi,St = Di∑

i′∈St
Di′ are the mixing weights.

Decentralized FL architectures do not employ the PS but
rather share their local model(s) repeatedly over Device-
to-Device (D2D) links so as to reach a consensus on a
global model (consensus-based FL): the clients form a graph
Gt = (Vt, Et), where each node i ∈ Vt corresponds to
a client/learner, while the edge (i, j) ∈ Et, with i ̸= j,
signifies the presence of a communication link from client
i to client j. The consensus-based algorithm, referred to as
CFA, operates as follows. At round t, each client i ∈ St

performs a local model optimization step and then exchanges
the model parameters with its neighbors Ni,t. Subsequently,
an aggregation step is executed, similar to the PS [53]:

ψi,t = wi,t + ϵt

∑

k∈Ni,t

αk,Ni,t
(wk,t −wi,t) , (2)

where ψi,t represents the aggregated model, ϵt is the
consensus step-size which modulates the memory of previous
models and αk,Ni,t = Dk∑

k′∈Ni,t
Dk′ are the mixing weights

related to client k, based on the number of samples retained in
each client. While the weights αk,Ni,t

enable CFA to partially
cope with sample unbalances, they do not fully capture the
information gain of each local model in case of different data
qualities or other types of non-IID data imbalances. Note that
the aggregated model ψi,t represents an estimate of the global
model as seen by client i and its neighborhood Ni,t. However,
as opposed to (1), here the aggregated model is obtained by
taking into account the error between the local model and the
neighbor ones. It is worth noting that the algorithm operates
in the same manner if clients exchange gradients of the local
model update instead of model parameters.

B. FL for non-IID
The importance of IID sampling in training data lies in

the fact that it ensures the stochastic gradient is an unbiased
estimate of the full gradient. FedAvg and CFA are known
to be effective when data distribution across different nodes
is the same as for the centrally collected data. However, in
practice, data distribution across local nodes is typically non-
IID, resulting in local losses Li(wPS,t) to be closely related
to data distribution Di and local updates to gravitate towards
the optima of its local loss Li(wPS,t) rather than the global
loss L(wPS,t). The inconsistency between local models wi,t

and the global model wPS,t accumulates during local training,
necessitating more communication rounds for convergence.
Consequently, multiple local updates during local training can
potentially harm convergence and even cause divergence in
the presence of non-IID data [3].

When it comes to design PS-based FL algorithms for
non-IID data, two major categories can be distinguished:
either based on the local model optimization (e.g., adding
a penalizing loss term) or either based on the global
model aggregation step (e.g., weighting the local model
contributions). Examples of the first category include FedProx
[48], Distributed Approximate NEwton (DANE) [73], and
Federated Curvature (FedCurv) [74]. FedProx uses parameter
stiffness, i.e., an isotropic penalty term in the local loss, to
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avoid diverging from the global model. DANE builds upon
FedProx by adding a gradient correction term to accelerate
convergence, while FedCurv exploits the Fisher information
matrix to protect parameters that are important to each task.

The second category of algorithms, on which we focus
on, leaves unaltered the local model optimization step, while
targeting the optimal aggregation weights that the PS should
employ. FedAdp [50] is one of the most relevant works in
this direction which aims at designing the aggregation weights
α̃i,St

, such that
∑

i∈St
α̃i,St

= 1, in order to increase the
convergence rate especially in non-IID settings. The main idea
is that the greater the difference between the global gradient
(i.e., of the global model) and the local gradients of each client,
the higher is the weight that should be assigned to the local
update. To this aim, the PS, after receiving the local updates,
computes the global gradient starting from the gradient descent
update:

wPS,t = wPS,t−1 − η∇L(wPS,t) (3)
with

∇L(wPS,t) =
∑

i∈St

αi,St
∇Li(wPS,t), (4)

and ∇Li(wPS,t) = −∆i

η represents the approximated local
gradients of client i, with ∆i = wi,t − wPS,t−1. A measure
of the distance between the gradients can be obtained, as
proposed in [50], by using the instantaneous angle θi,t:

θi,t = arccos
∇L(wPS,t)

T · ∇Li(wPS,t)

∥∇L(wPS,t)∥∥∇Li(wPS,t)∥
, (5)

where ∥ ·∥ represents the l2 norm. Furthermore, for numerical
stability purposes, a smoothed angle θ̃i,t is used:

θ̃i,t =

{
θi,t t = 1
t−1

t θ̃i,t−1 + 1
t θi,t t > 1.

(6)

Finally, the aggregation weights are obtained as:

α̃i,St =
∑

i∈St

αi,Ste
f(θ̃i,t), (7)

where f(θ̃i,t) = αG(1 − e−e−αG(θ̃i,t−1)

) is a variant of the
Gompertz function [75] and αG is an hyper-parameter. We
highlight that αG regulates the sensitivity with respect to
the smoothed angle between the gradients. The higher αG,
the more sensitive the output is to the smoothed angle,
potentially increasing the difference in contributions from the
participating clients.

III. WEIGHTED CONSENSUS ALGORITHMS

In this section, we first describe the proposed weighted
consensus algorithm, specifically designed to handle
heterogeneous clients. Next, based on the analysis of [50],
we discuss the convergence properties which exploit the
weighted consensus scheme.

In fully decentralized scenarios where the PS is not
available, each client member of the federation must depend on
the local updates from its neighbors to compute the aggregated
model: the goal is to determine the optimal aggregation
weights α̃i,St to be used in the aggregation step. Following
the FedAdp paradigm, the main challenge is to identify the
equivalent global model on which the similarity metrics should

be calculated. We propose that each client hosts virtual PS
functions, where ψi,t in (2) can be now interpreted as an
instance of the PS global model which is observed by the
local client i using the available neighbors. In what follows, we
refer to this solution as Consensus-driven FedAdp virtual PS
(CFAdp-vPS). An alternative approach that will be explored in
the next sections, involves selecting one specific neighbor local
model as the reference instance (i.e., reference model) of the
global model, and computing the various gradient distances
concerning it. In the subsequent sections, we provide a
detailed description of the two versions of weighted consensus
algorithms, emphasizing their key characteristic steps.

A. CFAdp with Virtual PS

The first CFAdp algorithm is the dual version of the
vanilla PS-based FedAdp method adapted to implement linear
distributed average consensus among peer clients. The method
is described in Algorithm 1. Here, each client i, after receiving
the neighbors local models wk,t ∀k ∈ Ni,t, computes the
aggregated gradient as:

∇L(ψi,t) =
∑

k∈St

αk,St
∇Lk(ψi,t), (8)

where∇Lk(ψi,t) = −∆i

η are the approximated local gradients
of client k and ∆k = wk,t − ψi,t−1. Note that (8) is the
analogous of (4) where the global model wPS,t is substituted
with its local representation ψi,t. Here, the aggregated
gradients serve as an approximation of the gradients gathered
and combined by a PS, connected with the neighbors Ni,t

and the node i itself. The instantaneous angles are computed
similarly to (5) in lines 13 of Algorithm 1:

θk,St
= arccos

∇L(ψi,t)
T · ∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥
, (9)

where the global gradients are substituted with the aggregated
gradients, i.e., ∇L(ψi,t) with respect to the aggregated model
ψi,t in client i. The instantaneous angle directly relates to the
amount of information that can be injected from client k into
the learning system. Note that client i has no advantage with
respect to all the other clients and that its model contribution
can be made negligible according to the angles. Consequently,
the new aggregated model is estimated with:

ψi,t =
∑

k∈St

α̃k,St
wk,t, (10)

where the mixing weights α̃k,St
are obtained in line 16 as:

α̃k,St =
Dkef(θ̃k,St )

∑
k′∈St

Dk′ef(θ̃k′,St
)
∀k ∈ St. (11)

The mixing weights in (11) are obtained similarly to a softmax
function, but with the usage of the Gompertz function. This
function enables a slow and gradual variation of the weights
for big angles, ensuring that major differences between clients
do not lead to abrupt changes in the aggregation weights.
As the angles decrease, the function allows for a more
significant adjustment in the weights, enabling clients with
similar, i.e., smaller angles, to have a more substantial impact
on the consensus. Finally, the local model optimization step
is performed starting from ψi,t as in CFA.
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Algorithm 1 Consensus-driven FedAdp virtual PS:
1: procedure CFADP-VPS(Ni,t, αk,St

) ▷ Run on client i
2: authentication with network broker
3: receive parameters (E, B) ▷ RX from broker
4: initialize wi,0 ← device i
5: for each round t = 1, 2, ... do ▷ Training loop
6: receive{wk,t}k∈Ni,t

▷ RX from broker
7: Dec{wk,t}k∈Ni,t

▷ Decipher weights
8: ∇Lk(ψi,t) = −∆k

η ∀k ∈ St

9: ∇L(ψi,t) =
∑

k∈St
αk,St

∇Lk(ψi,t)

10: θk,St
= arccos

∇L(ψi,t)
T·∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥
∀k ∈ St

11: θ̃k,St
=

{
θk,St t = 1
t−1

t θ̃k,St−1 + 1
t θk,St t > 1

∀k ∈ St

12: f(θ̃k,St
) = αG(1− e−e

−αG(θ̃k,St
−1)

) ∀k ∈ St

13: α̃k,St
= Dke

f(θ̃k,St
)

∑
k′∈St

Dk′ e
f(θ̃

k′,St
)
∀k ∈ St

14: ψi,t =
∑

k∈St
α̃k,Stwk,t

15: wi,t+1 = ψi,t − η∇Li(ψi,t) ▷ Model update
16: send Enc (wi,t+1) ▷ Encrypt and TX to broker
17: end for
18: end procedure

We want to point out that the CFAdp algorithm considers
both the volume of data and the contribution of each node
in the neighborhood (i.e., the correlation between the local
and aggregated gradients obtained from neighbors) when
determining the appropriate weights for model aggregation.
As described in Sec. III-C, this allows to infer an upperbound
to the rate at which the overall FL loss may decline, under
specific assumptions on loss function.

B. CFAdp with Client Selection

As clarified in the analysis of Sect IV, in some cases,
computing the aggregated gradients as in (8) may not be
the best way to combine the local gradients observed in
the neighborhood. For example, this might happen when a
neighbor’s local model gives a limited or negative contribution
to the FL process. The proposed algorithm, referred to as
CFAdp with Client Selection (CFAdp-CS), allows every client
to proactively select the best neighbor model which is used to
represent the new aggregated model, namely, a new reference
ψi,t for the next round t.

The comprehensive pseudo-code is outlined in Algorithm
2, and it works in the following way. After receiving the
neighbor models, each client i computes the instantaneous
and smoothed angles, and Gompertz function for each couple
of neighbors, obtaining the matrices θk1,k2,t, θ̃k1,k1,t and
f(θ̃k1,k2,t) ∀k1, k2 ∈ St, k1 ̸= k2, respectively. In particular,
the instantaneous angles are estimated as:

θk1,k2,t = arccos
∇Lk1(ψi,t)

T · ∇Lk2(ψi,t)

∥∇Lk1
(ψi,t)∥∥∇Lk2

(ψi,t)∥
. (12)

This permits the evaluation of the similarities between clients’
updates, holding a method to select the best reference clients

Algorithm 2 Consensus-driven FedAdp with Client Selection:
1: procedure CFADP-CS(Ni,t, ϵt) ▷ Run on client i
2: authentication with network broker
3: receive parameters (E, B) ▷ RX from broker
4: initialize wi,0 ← device i
5: for each round t = 1, 2, ... do ▷ Training loop
6: receive{wk,t}k∈Ni,t

▷ RX from broker
7: Dec{wk,t}k∈Ni,t

▷ Decipher weights
8: ∇Lk(ψi,t) = −∆k

η ∀k ∈ St

9: θk1,k2,t = arccos
∇Lk1

(ψi,t)
T·∇Lk2

(ψi,t)

∥∇Lk1
(ψi,t)∥∥∇Lk2

(ψi,t)∥
∀k1, k2 ∈ St, k1 ̸= k2

10: θ̃k1,k1,t =

{
θk1,k2,t t = 1
t−1

t θ̃k1,k2,t−1 + 1
t θk1,k2,t t > 1

∀k1, k2 ∈ St, k1 ̸= k2

11: f(θ̃k1,k2,t) = αG(1− e−e
−αG(θ̃k1,k2,t−1)

)
∀k1, k2 ∈ St, k1 ̸= k2

12: k∗
t = argmaxk

∑
k′∈St,k′ ̸=k f(θ̃k,k′,t)

13: α̃k,k∗
t

= Dke
f(θ̃k,k∗

t
)

∑
k′∈Nk∗

t

Dk′ e
f(θ̃

k′,k∗
t
)
∀k ∈ Nk∗

t

14: ψi,t =wk∗
t
+ ϵt

∑
k∈Nk∗

t

α̃k,k∗
t

(
wk,t −wk∗

t

)

15: wi,t+1 = ψi,t − η∇Li(ψi,t) ▷ Model update
16: send Enc (wi,t+1) ▷ Encrypt and TX to broker
17: end for
18: end procedure

with respect to the current update. Then, the reference
neighbor model is selected as:

k∗
t = argmax

k

∑

k′∈St,k′ ̸=k

f(θ̃k,k′,t). (13)

The reference neighbor in (13) is chosen by taking among
the summations of the Gompertz functions since this helps
in identifying the client whose local model is most similar
to the majority of the neighboring models, thus maximizing
the potential contribution to the consensus. The aggregation
weights are computed excluding the reference client as:

α̃k,k∗
t

=
Dke

f(θ̃k,k∗
t
)

∑
k′∈Nk∗

t

Dk′e
f(θ̃k′,k∗

t
)
∀k ∈ Nk∗

t
. (14)

As opposed to (10), the aggregated model is now obtained
using the selected client k∗

t as reference and implementing an
exponential moving average:

ψi,t =wk∗
t
+ ϵt

∑

k∈Nk∗
t

α̃k,k∗
t

(
wk,t −wk∗

t

)
, (15)

where ϵt modulates the memory of previous models. The
benefit of this approach is that, in a fully-connected network,
all clients will select the same reference client during each
federated round, leading to a more stable and seamless
convergence. This is especially advantageous when one client
possesses a highly representative model, as it can serve as
a reference to accelerate the convergence process. Notice
that (15) can be rewritten as (10) as shown in Appendix A.
Therefore, CFAdp-CS can be interpreted as a special case
of CFAdp-vPS for which the same convergence properties as
described in Sec. III-C hold.
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As a last remark, note that through Algorithm 2 it is
always possible to force each client i to choose its own
local model i as the reference, so that k∗

t = i, ∀t, and
regardless of the reliability of the local data and update. This
particular degenerate case, referred to as CFAdp Egocentric
(CFAdp-Ego), will further analyzed in Sect. IV. In this case,
the model aggregation (15) reduces to:

ψi,t =wi,t+ ϵt

∑

k∈Ni,t

α̃k,i (wk,t −wi,t) . (16)

In the egocentric approach, each client uses its own local
model as the reference. In other words, the instantaneous
angles in (12) are computed between the local gradients ∇Li

and the neighbors’ gradients ∇Lk. If the local model is highly
biased, such as in the scenario depicted in Figure 6 with 1 IID
client and 9 non-IID clients, relying on a biased local reference
can hinder optimal aggregation.

The three proposed strategies, namely CFAdp-vPS,
CFAdp-CS and CFAdp-Ego, are visually represented in Fig. 2
to highlight their mutual differences. In Fig. 2(a), representing
CFAdp-vPS, the reference clients (highlighted in red) are
all the available ones in the subset St, as described in (8).
Therefore, each client acts as a virtual PS, which collects and
updates the model independently from its index.

In Fig. 2(b), illustrating CFAdp-CS, the reference client
changes at each round according to the model with the highest
contribution, as determined by (13). Note that the selected
client is the same for all clients in the network during that
round, leading to a more stable and seamless convergence.

Finally, in Fig. 2(c), we show the CFAdp-Ego, where each
client adopts its local model as the reference. This means
that the aggregation is centered around each client’s own
model, and the similarities are computed between the local
gradients and those of the neighbors. As previously discussed,
if the local model is highly biased, its dependence can lead
to suboptimal aggregation and affect the convergence of the
algorithm.

C. Convergence Analysis
We now analyze the theoretical convergence of the proposed

CFAdp algorithm by adopting typical FL assumptions [36],
[41], [48], [50], [52].

Assumption 1. γ-Lipschitz smoothness.
Considering a generic client i member of the federation,
we let Lk(ψi,t) ∀k ∈ St be γ-Lipschitz smooth i.e.,
∥∇Lk(ψi,t)−∇Lk(ψi,t+q)∥ ≤ γ∥ψi,t −ψi,t+q∥ for any
two parameter vectors ψi,t,ψi,t+q .

Based on Assumption 1, the local
representation of the global objective, defined as
∇L(ψi,t) =

∑
k∈St

αk,St∇Lk(ψi,t), can also be assumed as
γ-Lipschitz smooth since

∑
k∈St

αk,St
= 1 for each subset

St.

Assumption 2. Bounded Local Dissimilarity.
For any client i, the dissimilarity between local loss of client k
and the local representation of the global objective at ψi,t is
bounded by A and B, i.e., A∥∇L(ψi,t)∥ ≤ ∥∇Lk(ψi,t)∥ ≤
B∥∇L(ψi,t)∥.
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Fig. 2. Three Consensus-driven Federated Adaptive Weighting (CFAdp)
strategies, where reference models and neighbors are highlighted in red and
green, respectively. From top to bottom: CFAdp with virtual PS (CFAdp-vPS),
with client selection (CFAdp-CS) and egocentric (CFAdp-Ego).

Notice that when all the local data samples are the
same, it is A = B = 1, therefore the local dissimilarity
|A−B| in Assumption 2 might be an indicator of the data
heterogeneity among clients, under the assumption of same
training configuration.

Assumption 3. Stationarity.
For any client i, we assume that the subsets St and Ni,t ∀i ∈
St are stationary over time.

In the context of PS-based FL, the same assumptions have
been made in several works [17], [36], [48], [52], [76]–
[80] to ensure stability and successful convergence of the
learning process across distributed datasets. Smoothness [76]–
[78] is a safeguard to ensure that the learning process is
stable, meaning small changes in the model parameters don’t
result in large variations in learning loss, while the bounded
dissimilarity [17], [79] ensures that learning can be effectively
coordinated across different clients to converge towards a
useful model that generalizes across all participating nodes.

Finally, by assuming stationary neighbors (as done in [80]),
the client selection policy remains consistent over time, which
is crucial for establishing the convergence guarantees of
the WAC strategy. This practical assumption acknowledges
that not all nodes participate in every round due to factors
like network connectivity issues or device availability, but
maintains that the selection of participating clients does not
change drastically over time, thus providing a stable and
predictable learning environment. However, the algorithm
remains operational even in non-stationary environments. In
scenarios where the network topology changes, the algorithm
can still work effectively if the client selection policy adheres
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to a consistent random and uniform mechanism. This ensures
ergodicity, meaning every client has a fair chance of being
selected over time, regardless of dynamic network changes.

It is important to note that the consensus-based FL
inherently complements the mesh network structure, where
each node not only captures and disseminates its own data, but
also serves as a relay for other nodes. In the case of a mesh
network, even if the mobility of the clients is partially present,
the consensus-based FL model would still work effectively,
assuming that the set of neighboring clients remains stationary.
This essentially implies that even if a subset of clients changes
its position or connection, as long as the overall structure of
the neighboring set of clients remains consistent over time, the
learning process can proceed uninterrupted.

Theorem 1. With loss function Lk(ψi,t) satisfying
Assumptions 1-2-3 and supposing ψi,t is not a stationary
solution, the expected decrease in the global loss function
on client i-th and between two consecutive consensus rounds
satisfies,

L(ψi,t+1) ≤ L(ψi,t)

− ηEk∈St

[( ∇L(ψi,t)
T · ∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥

− Bγη

2

)
A2

2
∥∇L(ψi,t)∥2

]
, (17)

where the expectation Ek|t refers to the weighting strategy of
the client k ∈ St for global model aggregation.

The proof of Theorem 1 builds upon [50] while to guarantee
paper self-consistency, it is discussed in Appendix B. Theorem
1 provides a bound on how rapid the decrease of the FL loss
can be expected on the generic client i. It is straightforward
to verify that the convergence upper bound of decentralized
FL tool after NFL consensus rounds is given by

L(ψi,NFL
) ≤ L(ψi,1)

− η

NFL∑

t=1

Ek∈St

[( ∇L(ψi,t)
T · ∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥

− Bγη

2

)
A2

B
∥∇L(ψi,t)∥2

]
. (18)

Based on Theorem 1, we have the following remarks.

Remark 1. The decrease of FL loss on the client i and
between two consecutive learning rounds shows the same
dependencies as in the FedAdp algorithm [50] including
the bound gap [A, B]. The correlation ∇L(ψi,t)

T·∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥
between the local gradient and the representation of the global
gradient, obtained from the received neighbor models, is a
local metric to measure their alignment level.

Remark 2. Similarly as for PS-based FedAdp, increasing
Ek∈St

[·] in each global round improves the convergence of
decentralized FL. Contributions of each individual neighbor
can be measured quantitatively through the correlation

∇L(ψi,t)
T·∇Lk(ψi,t)

∥∇L(ψi,t)∥∥∇Lk(ψi,t)∥ between the local gradient ∇Lk(ψi,t)

and the local representation of the global gradient ∇L(ψi,t)
obtained from the neighbors, and assign larger weights to

Tes ng site

IoT devices/learners
Network (MQTT) broker

Local

model

Network
(gateway,

broker etc..)

Fig. 3. Real FL-platform composed of IoT devices, i.e., Jetson Nano,
connected via WLAN to a workstation.

the nodes with higher contribution to enlarge the expected
decrease of FL loss in each global round.

IV. SIMULATION EXPERIMENTS

In this section, we first describe the real-world FL network
platform, and then clarify the main networking characteristics
and tools that underpin the CFAdp-CS, CFAdp-vPS and
CFAdp-Ego consensus processes. Finally, we present the
results on convergence properties and performances with
highly skewed non-IID data distributions.

A. FL Networking Characteristics and Platform

In order to validate the three proposed CFAdp strategies,
we adopted both simulated and real fully-distributed clients
connected via Wireless Local Area Network (WLAN)
and communicating, i.e., exchanging neural network model
parameters, through the broker-based Message Queuing
Telemetry Transport (MQTT) protocol [81]. The simulated
network of clients was implemented in a workstation featuring
an Intel(R) Xeon(R) Silver 4210R CPU operating at 2.40
GHz, 96 GB of RAM, and a Quadro RTX 6000 24 GB
GPU. This allowed us to have more flexibility in defining the
computational capabilities and the number of clients. On the
contrary, the real-FL platform prototype was composed of 6
Jetson Nano devices [82] equipped with CPU ARM-Cortex-
A57 and GPU 128-core Maxwell. The laboratory comprising
the IoT devices and the workstation is shown in Fig. 3.

Communications among the clients in the consensus scheme
are managed by an MQTT broker, which receives and
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forwards model updates. Specifically, each client subscribes
to the topics related to the model parameters of its
neighbors. Upon completing a local training round, a client
pushes its updated local model to its designated topic, e.g.,
/fl_session_ID/client_ID, and pulls the updated
models from its neighbors. This pulling operation can be
performed asynchronously and automatically, allowing the
clients to continuously listen for new updates on their
neighbors’ topics. The MQTT protocol ensures reliable
communication by handling possible packet losses and
retransmissions, guaranteeing exactly-once packet delivery
through Quality-of-Service (QoS) level 2. Notice that, as
observed during the experimental tests, a high QoS level might
introduce transmission delays. The development of strategies
to mitigate them has not been considered in this paper, as our
primary objective is to design a WAC learning strategy tailored
for non-IID local data. Despite the observed delays in the tests,
the use of MQTT transport combined with the proposed WAC
strategies demonstrated robustness and resilience. For more
insights into the potential effects of transmission delays on
FL optimization procedures in the presence of a PS, we refer
to our previous work [40].

B. FL Dataset and Implementation

Regarding the datasets, we employed a simple dataset
widely used for classification tasks, i.e., the Modified National
Institute of Standards and Technology (MNIST) [83] dataset
using the full validation data, and a more complex scenario
with Canadian Institute For Advanced Research (CIFAR)-
100 dataset [84]. The corresponding adopted DL models are
a Convolutional Neural Network (CNN) (LeNet architecture
[85]) and a Convolutional Vision Transformers (CVT) model
[86]. For training procedures, we considered the Adam
optimization algorithm [72] with an initial learning rate of
0.0001 and momentum values of m1 = 0.9 and m2 = 0.999.
To choose the hyper-parameter αG, we tested the values in the
range [1, 10] and we reported the results in Fig. 4. Note that
increasing αG improved the accuracy up to a certain point,
beyond which the performance gains saturated. We found
that αG = 4 provided a good trade-off between sensitivity
to the smoothed angles and preserving the distinguishability
of contributions from nodes with smaller angle differences.
Therefore, for the experiments, we assigned αG equal to 4.
The consensus step-size ϵt was set to 0.3. Finally, we adopted
a number of local epochs E = 1 and a maximum number of
federated rounds NFL = 100.

In order to accurately regulate the degree of non-IIDness
between clients, we considered two cases. First case adopts a
Dirichlet distribution to assign the number of local samples,
namely the quantity skew. For the second case, the Dirichlet
density is used to regulate the label distributions, or label skew
[41], [87], [88]. In particular, for non-IID sample distributions,
the same percentage of labels is retained on each client, while
the number of samples in client i is Di = p

(S)
i D, where D is

the total number of training samples and p(S) = [p
(S)
i ]Ki=1 ∼

Dir(β(S)) are the random samples of a Dirichlet distribution
with concentration parameters β(S). Here, for simplicity, we
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Fig. 4. Tuning of the Gompertz function hyper-parameter αG.

consider β(S) = [β
(S)
i ]Ki=1 = [β(S)]Ki=1. On the contrary, for

non-IID label distributions, the same quantity of samples is
kept on each client, while the distribution of labels across
clients follows the Dirichlet distribution. In particular, for a
client i, the proportion of label ℓ in the local dataset is p

(L)
iℓ ,

where p(L)
i = [p

(L)
iℓ ]9ℓ=0 ∼ Dir(β(L)) and β(L) = [β

(L)
ℓ ]9ℓ=0 =

[β(L)]9ℓ=0.

C. Convergence Analysis

In this first assessment, we aim at verifying the convergence
capabilities of the proposed algorithms within a specific client,
e.g., i = 10, whose local data distribution is much different
from those of its neighbors. This is done in order to compare
the different methods (i.e., CFAdp methods and non-adaptive
baseline strategy CFA) in the worst-case scenario where non-
IID clients usually struggle to converge. To this aim, we
simulated a network of K = 10 clients in two scenarios:
(a) 9 clients out of 10 hold a uniform distribution of labels,
while a single client holds a non-IID label distributions with
β(L) = 0.2, and (b) only 1 client out of 10 holds a IID label
distribution. For an example showing how labels are assigned,
we refer to Fig. 5, where we represent the histogram of the
labels for each client. Note that the client i = 10 under
consideration has a very imbalanced distribution of labels, e.g.,
in Fig. 5(a) digits 7 and 8 are missing.

In Fig. 6, we show the average validation accuracy
computed by i = 10 for each federated round and varying the
consensus algorithm, including both scenarios (a) and (b). This
is done to establish lower and upper bounds for each consensus
algorithm’s performance in the presence of non-IID local data.
Further intermediate non-IID cases are tested in Sec. IV-D. The
confidence bounds are obtained using the standard deviation as
uncertainties. Additionally, we have included the centralized
(i.e., PS-based) FedAdp algorithm in our comparisons as an
upper bound to the consensus CFAdp versions. This inclusion
allows us to benchmark the performance of our proposed
algorithms against the best possible scenario in a centralized
setting. A common behaviour in the two scenarios is that with
CFA, due to the highly imbalanced distribution, the client
struggles to converge and presents drops of performances
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Fig. 5. Examples of label distributions in a federation of 10 clients. (a) Clients
1-9 retain a uniform distribution of labels (i.e., colors 0-9), while client 10
holds an imbalanced distribution. (b) Only client 1 has IID local distribution.

caused by local overfitting. On the contrary, adopting a FL
WAC strategy as CFAdp-Ego, we notice a much higher speed
of convergence and stability on the training. However, given
the fact that the reference local model is highly biased towards
the skewed distribution, the performances are inferior to the
CFAdp-CS which automatically selects the best neighbors’
model as reference. Focusing on scenario (b), with CFAdp-CS
we also avoid using the unbalanced models as references and
outperform even the CFAdp-vPS. On the contrary, whenever
the vast majority of clients have IID distributions as in scenario
(a), it is more convenient to adopt the CFAdp-vPS since it
represents the equivalent PS-based version.

To further analyze the convergence of the proposed
algorithms, in Fig. 7, we represent the aggregation weights
in client i = 10 and scenario (a) at different training
epochs for every neighbor k, i.e., αk,St , α̃k,i, α̃k,k∗

t
and

α̃k,St
for CFA, CFAdp-Ego, CFAdp-CS and CFAdp-vPS,

respectively. Notice that the baseline strategy maintains all
the weights αk,St

= Dk∑
k′∈St

Dk′ = 1/K = 0.1 since

0 10 20 30 40 50 60
Round

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

CFA
CFAdp-Ego
CFAdp-CS
CFAdp-vPS
FedAdp
9 IID - 1 non-IID
1 IID - 9 non-IID

A
cc

ur
ac

y
Round

Fig. 6. Validation accuracy in a non-IID client varying the number of training
FL rounds, for different consensus algorithms (i.e., baseline CFA and proposed
CFAdp-Ego, CFAdp-CS and CFAdp-vPS). Two scenarios are represented: (a)
9 IID - 1 non-IID, (b) 1 IID - 9 non-IID clients.

all clients retain the same number of samples. On the
contrary, the WAC strategies modulate the weights in order to
compensate the unbalance between label distributions. Here
the consensus step-size ϵt is fixed to 0.3 for all epochs
in order not to alter the convergence of the aggregation
weights. Between the WAC strategies, we can see that the
CFAdp-Ego presents periodical changes of weights values
due to tendency on overfitting. Moreover, the convergence
times are much slower if compared with CFAdp-CS and
CFAdp-vPS. Indeed, selecting the best neighbor dramatically
smooths the convergence process and ultimately leads to a
faster approximation towards the CFAdp-vPS solution.

D. Quantity and Label Skweness

In this section we evaluate two different datasets, i.e.,
MNIST and CIFAR100, using two DL models, i.e., CNN and
CVT, respectively, tested on both simulated and real devices.

In this first experiment, we assess the performances of
the proposed methods when the number of samples in each
client varies significantly according to a Dirichlet distribution
described in Sec. IV-B. This is important in order to measure
the capabilities of coping with important or negligible local
updates, as well as with generalized or overfitted models.
To this aim, we simulated three different FL scenarios with
K = {3, 10, 30} clients and we plot in Fig. 8 the mean and
standard deviations of the reached validation accuracy after 20
rounds, varying β(S) ∈ [0.01, 1].

From the results, we note that the observed tendency in the
previous experiments is found again among all β(S) values, i.e.,
the simple weight aggregation strategy of CFA, based solely
on the number of samples, struggles with very imbalanced
distributions. Starting with the three-client scenario, we notice
that if the distributions are the same among all clients,
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Fig. 7. Average aggregation weights after 5 different runs of CFA, CFAdp-Ego (a), CFAdp-CS (b) and CFAdp-vPS (c), at varying training federated rounds.
We refer to (16), (14) and (11) for the aggregation weights α̃k,i, α̃k,k∗
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and α̃k,St of CFAdp-Ego, CFAdp-CS and CFAdp-vPS, respectively. The baseline

non-adaptive CFA has all the weights αk,St = 1/K = 0.1.

i.e., high β(S), the proposed CFAdp strategies reach the
same level of accuracy. This is intuitive since whenever all
models bring the same contributions, there is not advantage
in choosing a specific one. Still, the WAC, with adaptive
aggregation weights, outperforms the conventional CFA from
7 to 56%. With a higher number of clients, the convergence
time increases and the differences between the proposed WAC
strategies become more distinct.

In the last assessment, we employ the real FL-prototype
composed of 6 IoT devices where each client experiences
non-IID label distribution with β(L) varying in [0.05, 100].
Different from before, here we employ the much more
complex CVT model and CIFAR100 dataset. In Fig. 9, we
report the validation accuracy reached after NFL = 100
federated round, for each consensus algorithm. Note that
with different β(L) and bigger models, the CFAdp-CS and
CFAdp-vPS have almost the same performances. This is due
to the fact that an increase in the number of model parameters,
coupled with the use of a larger number of classes (100),
worsens the overfitting of local models. Ultimately, it results
in an equivalent choice between using all clients or the best-
one as a reference. On the contrary, CFAdp-Ego, reduces the
maximum achievable performance since it always relies on
the local model which used as a reference for all the rounds.
Finally, the CFA struggles to achieve 80% of accuracy.

V. CONCLUSION

This paper addressed the challenges associated with non-
IID data distribution in fully-distributed, server-less networked
learning systems by introducing a new family of algorithms
with roots in WAC tools and adapted for FL processes, namely
Consensus-driven FedAdp (CFAdp). Evolved from WAC
schemes, the proposed tools have been optimized and adapted
specifically for FL, each one employing a unique strategy
for calculating the global model. Specifically, we developed
three CFAdp algorithms, named CFAdp-Ego, CFAdp-CS, and
CFAdp-vPS, where the reference local model is within the
client itself, within the best selected neighbor and across
all clients, respectively. They are then evaluated in terms of
their convergence properties and resilience against non-IID

data distribution. The evaluation included both simulated and
real experiments using a FL platform implemented over a
WLAN network, testing with varying model complexities, i.e.,
CNN and CVT, and datasets, i.e., MNIST and CIFAR100.
Specifically, the tests aimed to simulate complexity and
data heterogeneity typically encountered in IoT deployments,
including various degrees of sample and label skewness
modelled with Dirichlet distributions.

The derived key takeaways are the following. The weighted
consensus schemes, i.e., CFAdp, outperform the vanilla
tools, such as CFA, up to 56% thanks to the dynamic
adjustment of the aggregation weights, disregarding negative
client contributions. Whenever the federation of clients has
IID or non-IID local distributions, meaning that each client
has the same level of non-IID (quantity or label skewness), the
CFAdp-vPS, which represents the equivalent PS-based version,
achieves the best performances in terms of convergence time
and asymptotic accuracy. Conversely, whenever one or few
clients retain very high-quality and evenly distributed data, the
CFAdp-CS permits to take advantage of the good local model
contribution by taking the best client as a global reference.
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APPENDIX

A. CFAdp-CS vs CFAdp-vPS: Client Selection Process

In this section we discuss Algorithm 2 which implements
CFAdp by selecting a client as opposed to Algorithm 1
that implements weighting average. Algorithm 2 averaging
operation in (15) can be rewritten as follows:

ψi,t =

(
1− ϵt

∑

k∈Nk∗
t

α̃k,k∗
t

)
wk∗

t
+
∑

k∈Nk∗
t

ϵt α̃k,k∗
t
wk,t,

(A1)
Compared with Algorithm 2 the consensus weights α̃k,St are
thus modified as follows:

α̃k,Nk∗
t

=

{∑
k∈Nk∗

t

(1− ϵt α̃k,k∗
t
) k = k∗

t

ϵt α̃k,k∗
t

k ̸= k∗
t .

(A2)

In Sect. IV we provide a numerical comparison between
CFAdp weights α̃k,St and CFAdp-CS ones α̃k,k∗

t
as obtained

during FL training.

B. CFAdp-vPS: Proof of Theorem 1

From the γ-Lipschitz smoothness of L(ψi,t) in Assumption
1 and Taylor expansion, we have:

L(ψi,t+1) ≤L(ψi,t) +∇L(ψi,t)
T · (ψi,t+1 −ψi,t)

+
γ

2
∥ψi,t+1 −ψi,t∥2. (A3)

The last two terms on the right-hand side of the above
inequality are bounded respectively as:

• Bounding ∥ψi,t+1−ψi,t∥2: By the definition of the global
aggregation for ψi,t+1, we have:

∥ψi,t+1 −ψi,t∥ = Ek∈St [∥wi,t+1 −ψi,t∥]. (A4)
By following SGD optimization, for each term within the
expectation in the right hand side of A4, we have:

wi,t+1 = ψi,t − η∇Lk(ψi,t). (A5)
Therefore,
∥ψi,t+1 −ψi,t∥2 = (Ek∈St

[∥wi,t+1 −ψi,t∥])2

= η2(Ek∈St [∥∇Lk(ψi,t)∥])2

≤ η2Ek∈St [∥∇Lk(ψi,t)∥2], (A6)
where inequality holds because of Cauchy-Schwarz
inequality.

• Bounding ∇L(ψi,t)
T · (ψi,t+1 − ψi,t): Again, by the

definition of the global aggregation for ψi,t+1 and A5
we have:

∇L(ψi,t)
T · (ψi,t+1 −ψi,t) =

= −ηEk∈St
[∇L(ψi,t)

T · ∇Lk(ψi,t)]. (A7)
The expectation term in A7 can be further rewritten as
shown in [50] with the following substitutions: wPS,t

becomes ψi,t and the expectation is defined over all
clients k ∈ St.
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ABSTRACT Distributed Machine Learning (D-ML), such as Federated Learning (FL) and Split Learning
(SL), aims at resolving the limitations of Centralized Machine Learning (C-ML) by enhancing scalability
and efficiency. D-ML relies on the client-Parameter Server (PS) paradigm, in which clients collaboratively
train ML models while keeping their data locally, reducing the need for central data storage and preserving
data privacy. In this paper, we propose a new fully-distributed method, named Split Consensus Federated
Learning (SCFL), which combines the characteristics of FL and SL into a network of clients that cooperate
in learning a sharedmodel. Inspired by the iterative approach ofMessage Passing Neural Networks (MPNN),
the proposed SCFL framework allows to decentralize the training and inference tasks of the neural networks
at the clients, preserving the privacy of locally stored data. The proposed SCFL framework removes the
need for a coordinating central entity, i.e., the PS, resulting into a fully-decentralized solution where both
the training and inference procedures are distributed over the clients. We present three different strategies for
SCFL implementation and we validate them in a cooperative positioning use case where clients use D-ML
for network localization. Results show that the proposed SCFL method is able to combine the computational
power (and data) of all clients to train local models which closely approximate the global C-ML solution at
convergence.

INDEX TERMS Split consensus federated learning, split learning, federated learning, message passing
neural network, consensus, cooperative positioning.

I. INTRODUCTION
In recent years, Machine Learning (ML) has contaminated
several fields, including healthcare [1], [2], finance [3], [4],
and transportation [5], [6]. Most of the applications rely
on a Centralized Machine Learning (C-ML) architecture
where data collection and processing from multiple clients
is performed at a single central server, which raises concerns
about data privacy and security. Furthermore, with the rapid
increase in volume and complexity of data available at
different locations and machines, C-ML may face difficulties

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

in terms of scalability and efficiency. Consequently, there
is a growing demand for alternative methodologies that can
efficiently address the complexity and security issues while
retaining the benefits of conventional ML techniques.

Distributed Machine Learning (D-ML) [7], [8] has
emerged as a viable solution for avoiding data aggregation
at a single central entity. A popular D-ML mechanism is
Federated Learning (FL) [9], [10], which allows spatially
distributed clients to collaboratively train a global ML
model without the need of sharing their raw data. In FL,
each client keeps a local copy of the model, e.g., a Deep
Learning (DL) model, and trains it using local data, while
a coordinating Parameter Server (PS) aggregates the locally
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trained models to produce a global model shared among
all clients. This approach not only preserves data privacy
by keeping data within local boundaries but also enhances
computational efficiency and scalability in various distributed
environments [11], [12], [13], [14], [15], [16]. As a drawback,
the PS-based structure still relies on a central coordinating
entity for the aggregation of models, potentially leading
to a single point of failure and increased communication
overhead.

An alternative to FL is Split Learning (SL) [17], a
D-ML approach that has been recently designed to address
the challenges of resource-constrained setups, such as
Internet of Things (IoT) networks where clients may have
limited computing capabilities and energy resources. In SL,
the model training and validation processes are divided
between the clients and a PS, each having only a partial
access/visibility to/of a specific portion of the model [18].
This characteristic ensures both model and data privacy
while improving communication efficiency and convergence
speed compared to FL [19]. Specifically, the Neural Network
(NN) to be trained is split into two sub-networks at a
specific layer, named split or cut layer, and the upper
and lower layers are assigned to the clients and the PS,
respectively. Clients perform forward propagation and send
the output, called smashed data, to the PS, which com-
putes the final output. Gradients are then back-propagated,
with the PS sending the cut layer’s gradient back to the
clients. This process is repeated until new training data is
obtained.

A conceptual comparison of the two D-ML methods is
reported in Figure 1, in which we present the FL (Figure 1a)
and SL (Figure 1b) frameworks, indicating their main steps
indexed in chronological order. Specifically, the steps for
FL are: 0) local model optimization, 1) aggregation, 2)
broadcast of the updated global model; while the steps for
SL are: 0) client forward pass and exchange of smashed
data, 1) PS forward pass and back-propagation, 2) exchange
of PS gradients, 3) client back-propagation, 4) client model
exchange with next neighbors.

Although SL has received significant research attention,
a number of open problems are still to be addressed,
such as leakage reduction [20], [21], [22], [23], [24], non-
Independent and Identical Distributed (IID) data distribution
among clients [25], [26], [27], and communication costs.
Tackling these challenges is crucial for unlocking the full
potential of SL for D-ML applications.

A. RELATED WORKS
In this section, we discuss how the limitations of FL and SL
have been addressed so far in the literature and our proposal
to solve remaining open problems.

Vanilla FL architectures present two main drawbacks
related to centralization at the PS and limited computational
capabilities of clients. Decentralization has been proposed by
replacing the PS with a consensus procedure that performs

FIGURE 1. Schematic example of (a) FL and (b) SL in a network of two
clients and a PS. The client model parameters and gradients are indicated
with wi and ∇Li (wi ), respectively. On the contrary, the global or PS
model parameters and gradients are indicated with wPS and ∇LPS(wPS),
respectively. The weighted average of the FL is indicated with a thick bar.
Finally, the forward pass is indicated with F (·), back-propagation is
indicated with the model gradients inside a self-loop, and dashed lines
represent the next timestamp.

model fusion through iterative inter-client exchanges of
model parameters. First works in this direction are repre-
sented by fully-distributed gossip FL [28] and Consensus-
driven Federated Averaging (CFA) [29], [30]. In gossip
FL, local updates are propagated in a peer-to-peer manner
where each client shares its own local model update to
the immediate neighbors. CFA extends gossip approaches
to include average consensus by exploiting all or a subset
of neighbors at each round. Regarding FL with resource-
constrained devices, state-of-the-art approaches mainly focus
on optimized versions of SL that split the computations
between clients and PS, usually located in the cloud [31],
[32], [33]. However, SL does not exploit parallelization
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of training and validation procedures and still relies on a
centralized architecture with a PS.

More specifically, in SL, clients interact with the PS
sequentially, causing other clients’ resources to remain idle
during the relay-based training process. This results in
increased training overhead and latency, especially when
a large number of devices are involved in the learning
process. To solve this issue, some authors proposed to impose
differences in the training order and adjust the data size inside
the nodes [34]. A full parallelization has been introduced with
the Split Federated Learning (SFL) framework by the pioneer
works in [35], [36], and [37]. SFL integrates the primary
benefit of FL, i.e., parallel processing among distributed
clients, with the core advantage of SL, i.e., partitioning
the network into client-side and server-side sub-networks
throughout training. Unlike SL, SFL enables all clients to
carry out computations concurrently while engaging with
both a split PS and a federated PS. Contrary to SL, SFL allows
all clients to interact with the federated PS and the split PS
simultaneously while doing calculations.

A further problem of SL relies on the mandatory usage of
a PS whose main operation is to distribute the computational
complexity of model training and inference. However,
in massive IoT networks, a PS may not be available or
may be prohibitive from a communication point of view.
A first step in this direction is taken by the works [38], [39]
which introduce a split version of Recurrent Neural Networks
(RNNs) with a continuous exchange of smashed data among
clients. However, these architectures still rely on a PS, thus
lacking from a full decentralization.

B. ADDRESSING FL AND SL OPEN PROBLEMS
Unavailability of a fully-distributed methodology for both
training and inference is a major issue for adoption of FL and
SL in resource-constrained networks of devices, and it is thus
the topic we aim to address in this work.

For the design of a completely decentralized architecture,
we proposed the following. We first observe that in SL,
the key aspect is that clients alone are not able to perform
a complete inference (and back-propagation) of the whole
model, as the model is split between clients and PS to lower
the computational complexity of each node. Therefore, for
distributed SL, we conceive to train an overall model whose
intermediate outputs, i.e., smashed data, are computed and
exchanged between clients. A DL framework which satisfies
the aforementioned characteristics can be found in Graph
Neural Network (GNN) [40], more specifically in the variant
of Message Passing Neural Network (MPNN) [41]. Indeed,
in MPNN, the final inference is the result of sequential
intermediate outputs, obtained with a message passing
procedure [42], [43]. However, in vanilla MPNN, both the
training and inference procedures are centralized since the
exchange of node and edge embeddings happens in the same
physical machine. Moreover, the built computational graph
permits to back-propagate gradients in a unique and parallel

way such that at the end each nodes will have the same NN
parameters. In this paper, we propose to exploit the MPNN
methodology to fill the literature gap and design a new fully
decentralized SL architecture for distributed inference and
training, as outlined in the following section.

C. CONTRIBUTION
In this work, we propose to incorporate the message passing
scheme inside the MPNN as a sequence of smashed data
exchanged among clients, i.e., the nodes of the graph.
According to this scheme, at each timestep the clients do
not complete the inference of the whole model, but they
just perform one iteration of the message passing at a time.
Thus, the complete model is composed of many small models
retained by individual clients. The information available at
each client does not explicitly describe the available data, as it
is a hidden representation incorporated by the so-called node
and edge embeddings of the MPNN. This aspect ensures data
privacy, just as in vanilla SL, since each client holds private
labels or outputs. To accelerate the entire training process,
similarly to SFL, a consensus scheme is executed after
the message passing iterations. Depending on the number
of operations within the message passing iteration and by
the type of consensus scheme, i.e., full model exchange or
gradient average, we can distinguish between three main
training procedures, namely, 3-Steps Strategy (3SS), 2-Steps
Strategy (2SS) and Distributed-MPNN (D-MPNN). We refer
to this new fully-distributed framework as Split Consensus
Federated Learning (SCFL).

To summarize, the main contributions of the paper are the
following:
• A comprehensive review and comparative analysis of
FL, SL and SFL, with focus on the iterative processing
steps for training;

• The design of a fully-decentralized SFL architecture,
namely SCFL, which exploits the above analysis and
extends the centralized MPNN to perform distributed
training and inference procedures between physically
separated clients;

• The proposal and validation of three decentralized
training procedures for SCFL which can be effectively
adopted in fully-distributed agent networks.

Compared to FL, SL, and SFL, the key distinctive
advantages of the proposed SCFL method are the following:
• The introduction of a SL paradigm within the FL
framework, enabling complex DL models to be trained
on distributed resource-constrained devices through
an efficient message-passing mechanism inspired by
MPNN. This approach reduces the model bias and
enhances the model’s ability to accurately capture
underlying data patterns.

• The scalability with respect to the number of nodes,
allowing SCFL to be trained and scaled over complex
network topologies without procedural alterations. This
property is crucial for applications in dynamic network
environments with large number of connected devices.
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TABLE 1. Comparison of SL, FL, SFL and the proposed SCFL method.

• The unique capability of training DL models on
physically separated clients, where the inference of each
client is dependent on its neighbors. This feature is
particularly beneficial for tasks requiring collaborative
information sharing, such as cooperative positioning in
networks of agents.

• The preservation of privacy, the fully-decentralized
architecture, and the low complexity training, which
are fundamental for deployment in privacy-sensitive,
resource-constrained environments.

A summary of the main differences between the proposed
SCFL method and SL, FL and SFL is provided in Table 1.

The proposed SCFL solution is suitable for operating
conditions where distributed cooperative training is the only
viable option, and it is here validated for the illustrative use
case of Cooperative Positioning (CP) in agent networks [44],
[45], [46], [47], [48]. Examples of possible domains of
application are within the fields of vehicular networks [49],
[50], [51], [52], IoT [53], [54], maritime surveillance [55],
[56] and drones [57], [58].

D. PAPER ORGANIZATION
This paper is organized as follows. Section II presents the
distributed machine learning context, comprised of FL and
SL. Section III first introduces the proposed SCFL framework
and its relationship with the MPNNs, and then it presents
the distributed training and inference strategies, as well as
the innovation aspects of SCFL that allow to overcome the
limitations of current FL architectures. Section IV discusses
the CP use case of SCFL and its main experimental results.
Lastly, Section V draws the conclusions.

II. FUNDAMENTALS OF DISTRIBUTED ML
This section is designed to provide the reader the basic
understandings of D-ML, concentrating on architectural
and algorithmic aspects. The contents of this section are
indeed functional to contextualize and introduce the core
principles of the proposed SCFL method, described later
in Section III, as well as to highlight the differences with
respect to our solution. To this extent, we first describe the
framework of FL, specifically focusing on consensus-based
algorithms. Then, we describe the vanilla SL framework and
the related parallelized SFL version with PS. The focus on
such state-of-the-art notions is required since the proposed
SCFL paradigm inherits both the FL and SL features
and extends them to accommodate for a fully-distributed
scheme.

A. FEDERATED LEARNING
In the context of FL, we consider a network which includes
one PS and a set of I clients denoted as I = {1, . . . , I }. Each
client has its own dataset Si of size Si = |Si|. The objective
of the FL procedure is to obtain a global DL model defined
by the parameters w by minimizing:

wPS = argmin
w
L(w), (1)

where the loss function L(w) is given by:

L(w) = 1
I

I∑

i=1

Li(w,Si), (2)

with Li representing the loss determined by client i utilizing
the local data batches Si. To obtain the global model wPS,
an iterative process is carried out with each iteration involving
a local model optimization step performed by the client and
followed by an aggregation step executed on the PS.

Clients generate local models typically employing super-
vised and gradient-based optimization techniques, e.g.,
Stochastic Gradient Descent (SGD) or Adam optimizers [59],
with mini-batch B of size B and learning rate η. Each client i
carries out E local epochs prior to exchanging the local model
with the PS, which is responsible for updating the global
model.

In vanilla FL, i.e., Federated Averaging (FedAvg), the
aggregation step during federated round n = 1, . . . ,N is
conducted at the PS using a weighted average accounting for
the number of samples Si from each client as:

wPS,n+1 =
ϵ

∑I
j=1 Sj

I∑

i=1

Siwi,n + (1− ϵ)wPS,n, (3)

where wi,n are the local model parameters and ϵ modulates
the memory of previous models.

On the contrary, when no PS is available, the consensus-
based FL regime applies. In this framework, a network of
clients constitutes a graph G = (V, E), where each node
i ∈ V represents a client, while the edge (i, j) ∈ E ,
with i ̸= j, indicates the presence of a communication link
from client i to client j. Observe that edges (i, j) and (j, i)
are distinct, i.e., (i, j) ̸= (j, i), and they may not necessarily
exist concurrently. From the graph G, we define the set of
neighbors of client i as Ni = { j ∈ V|(i, j) ∈ E} and
Ni∗ = Ni ∪ {i}.

The consensus-based algorithm, called CFA, works in the
following way. At round n, each client i, after performing
a local model optimization step, exchanges the model
parameters wi,n with its neighbors Ni and subsequently
performs an aggregation step, similarly to the PS [29],
as:

ψ i,n = wi,n +
ϵ∑

j∈Ni
Sj

∑

j′∈Ni

Sj′
(
wj′,n − wi,n

)
, (4)

where ψ i,n is the aggregated model. This aggregation step is
needed to let the local model converge to a consensus global
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Algorithm 1 Consensus-Driven Federated Averaging
1: procedure CFA(Ni, ϵ, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: broadcast wi,n
5: receive {wj,n}j∈Ni
6: eq. (4)
7: wi,n = ModelUpdate(ψ i,n)
8: end for
9: end procedure
10: procedureModelUpdate(ψ i,n) ▷Model opt. step
11: compute F(ψ i,n) ▷ Forward-pass
12: compute ∇Li,n(ψ i,n) ▷ Backward-pass
13: ψ i,n← ψ i,n − η∇Li,n(ψ i,n) ▷ Local SGD
14: end procedure

model. The complete pseudo-code for CFA algorithm is
reported in Algorithm 1, where the local model optimization
step has been represented as a single-batch model update. For
simplicity of notation, we do not consider n-dependence on
hyper-parameters and graph structure. Note that the algorithm
works in the same way if the clients send the gradients of
the local model update, instead of exchanging the model
parameters.

B. SPLIT LEARNING
In the simplest SL framework, the model parameters w are
split into two parts (one for the PS and for the clients),
i.e., wPS,n and wi,n. Note that, here, differently from FL,
the model structures of wPS,n and wi,n are distinct. Thus,
to complete inference and back-propagation procedures,
an exchange of smashed data and gradients must be carried
out between PS and clients. The pseudo-code for SL
algorithm is given in Algorithm 2, reporting for simplicity
only the synchronization of the learning process in peer-
to-peer mode [17]. At the end of the training, SL permits
to achieve identical results to a traditional (i.e., centralized)
training procedure, where all layers are available at the same
entity, since it involves the same steps and processes (forward
propagation and back-propagating gradients), just applied in
a different order.

A drawback of the SL procedure is that it must be
executed sequentially by each client. To address this issue,
SFL algorithms remove the constraint on the sequentiality of
inter-client model exchange, performing forward propagation
of the client-side model in parallel. The PS processes the
forward propagation and back-propagation on its server-
side model using each client’s transformed data separately,
allowing a high degree of parallelism. After sending the
gradients back to the respective clients for their own back-
propagation, a step of FedAvg is performed by the PS and by
the clients through an additional PS for the federated part, i.e.,
FPS [35]. We refer to Figure 2 for a representation of the SFL
workflow.

Algorithm 2 Split Learning
1: procedure SL(η)
2: initialize wi,0 ∀ i ∈ I
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for client i = 1, . . . , I do ▷ Run on client i
5: compute F(wi,n) ▷ Client Forward-pass
6: send F(wi,n) to PS
7: receive

∇LPS,n(wPS,n) = PSUpdate(F(wi,n))
8: wi,n = ClientUpdate(wi,n)
9: send wi,n to client i+ 1
10: end for
11: end for
12: end procedure
13: procedure ClientUpdate(wi,n) ▷Model opt. step
14: compute ∇Li,n(wi,n) ▷ Client Backward-pass
15: wi,n← wi,n − η∇Li,n(wi,n) ▷ Local SGD
16: end procedure
17: procedure PSUpdate(F(wi,n)) ▷Model opt. step
18: compute F(wPS,n) ▷ PS Forward-pass
19: compute ∇LPS,n(wPS,n) ▷ PS Backward-pass
20: wPS,n← wPS,n − η∇LPS,n(wPS,n) ▷ Local SGD
21: end procedure

III. DESIGN OF SPLIT CONSENSUS FEDERATED
LEARNING
In D-ML frameworks where the PS is absent, the distribution
among clients of training and inference tasks becomes
challenging, especially for training. Indeed, the absence of
a PS prevents the direct coordination and consolidation of
local models into a global version. We here overcome such
limitations by proposing the SCFL approach.

SCFL differs from vanilla FL as it does not require
a PS coordinating the clients and aggregating the local
models for the convergence to a global version (exactly as
in distributed consensus-FL). The final goal of SCFL is
still to achieve the same global model in each client at the
end of training, but it is achieved with direct Device-to-
Device (D2D) communications. The fundamental difference
from consensus-FL is that, in SCFL, the clients need to
perform in a distributed way both training and inference
procedure. Indeed, they cannot complete a whole inference
autonomously for model complexity reasons, as in PS-based
SL. On the other hand, SCFL differs from PS-based SL as it
does not exist a PS-version of the model structure, since each
client is fundamentally equivalent to the others.

Themain assumptions that wemake for the design of SCFL
are the following:

A1) As in SL, FL and SFL, each client has the same model
structure;

A2) As in SL, FL and SFL, each client needs the forwarding
procedure result, i.e., smashed data, of its neighbors
to complete the inference. Thus, it results that both
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FIGURE 2. SFL framework with vanilla architecture composed of a split
PS, i.e., SPS, and a federated PS, i.e., FPS. For ease of notation, step 2) is
represented in the same way for both the clients.

training and prediction have to be performed in a fully-
distributed way;

A3) Each client has the ability of exchanging different types
of messages that span from direct model parameters or
gradients, up to smashed data. In any case, the body of
the messages must not disclose any private information
about the local retained data inside the clients.

These assumptions do not limit the usage or applicability
of SCFL, they rather give a performance advantage in
cooperative contexts, e.g., CP, where the exchange of
smashed data dramatically improves the performances. This
claim is analyzed in Section IV-C3, where we compare the
proposed solution with the CFA approach.

The above assumptions highlight a similarity with the
vanilla MPNNs approach, where nodes are represented by
distributed clients. Indeed, the inference message passing
procedure of MPNNs can be seen as multiple forwards
passes between clients which exchange smashed data, i.e.,
intermediate outputs of a bigger model. In the same manner,
back-propagation is computed by taking into account all
the predictions during message passing. However, while in
vanilla MPNNs the forward and backward passes are com-
puted within the same computational graph (i.e., centralized
procedure), for performing distributed operations, especially
training, we need to carefully design the strategy to follow.
We thereby propose to exploit this synergy by first revising
the centralized MPNN (Section III-A) and then designing an
extension to a distributed framework by incorporating the
MPNN into the proposed SCFL approach. This allows to
combine the benefits of both SL and FL. The distributed
features of the proposed SCFL solution are detailed for
both inference (Section III-B) and training (Section III-C)
procedures.

A. REVIEW OF CENTRALIZED MPNN
NNs operating on graphs have been investigated only in the
recent years, initially as GNNs [40], [41], and subsequently
expanded to include variations such as MPNNs [60].
Their goal is to train, in a centralized way, a function
that disseminates information throughout a graph G. The
information is diffused by message passing using node and
edge latent features, called embeddings, and denoted as v(t)i,n
and e(t)j→i,n, respectively, where t is the message passing
iteration index. For the encoding of the embeddings, a NN is
placed at each node and edge of the graph. TheNN at the node
is denoted by gv(·), while the one at the edge is represented
by ge(·). Then, according to the specific task, e.g., regression
or classification, an additional global NN is present.

Let us consider the node regression task with a specific
NN at the node g(regres)v (·). Given that gv(·), g

(regres)
v (·) and

ge(·) maintain the same parameters, across each node and
each edge respectively, they can be centrally trained on small-
scale graphs before being utilized in large-scale problems.
The final node prediction is performed independently by
each node after T message passing iterations in which node
and edge embeddings are updated through the NN models
according to the specific message passing structure.

We here recall the centralized vanilla MPNN inference and
training procedure. The inference procedure starts with the
node and edge embedding initialization, i.e., v(0)i,n, ∀j ∈ V ,
and e(0)j→i,n, ∀j ∈ Ni, through a feature extraction mech-
anism, e.g., an encoding NN. Then, at message passing
iteration t = 1, . . . ,T , each node i ∈ V sends the following
message to its neighbors Ni:

e(t)j→i,n = ge
(
v(t−1)i,n , v(t−1)j,n , e(t−1)j→i,n

)
, ∀j ∈ Ni, (5)

with

v(t)i,n = gv
(
v(t−1)i,n , 8

(
{e(t)j→i,n}j ∈ Ni

))
, (6)

where8(·) is called aggregation function and it can be chosen
among whatever function which is invariant to permutations
of its inputs, e.g., element-wise summation. After T message
passing iterations, the prediction is performed as:

ŷi,n = ŷ(T )i,n = g(regres)v

(
v(T )i,n

)
, (7)

where ŷi,n is the estimate of the true target variable
yi,n. Since the exchange of messages is centralized, the
inference and forward-pass procedure can be performed in
parallel considering all the edge and node embeddings as
samples of a batch that is given as input to the edge and
node NNs, respectively. Hence, what is carried out is the
training, in this case, of only three distinct and individual
NNs that will subsequently be distributed across various
network topologies. In order to compute the training loss
and perform back-propagation, the Residual Sum of Squares
(RSS) estimated at each epoch n and at the end of each
message passing iteration t after the regressor prediction ŷ(t)i,n
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FIGURE 3. Distribute inference procedure. a) node embedding exchange. b) edge and node embedding update. c) prediction.

is considered. It is defined as:

L = 1
N |V|

N∑

n=1

T∑

t=1

∑

i ∈ V

∥∥∥̂y(t)i,n − yi,n
∥∥∥
2

2
. (8)

In centralized MPNN, a key (limiting) aspect is that each
node cannot proceed with the next message passing without
the output of its neighbors at previous message passing
iteration. In the proposed SCFL framework, we overcome
such limitation by considering each node as an independent
and physically separated client that needs the neighbors
smashed data, i.e., node embeddings, to proceed with the
inference and, ultimately, perform prediction. The proposal
is detailed in the next section.

B. DESIGN OF DISTRIBUTED INFERENCE IN SCFL
In the proposed SCFL framework, each physically separated
client has to carefully choose the type of information
to be exchanged with its neighbors, avoiding unfeasible
communication costs. Therefore, we design an equivalent
distributed inference procedure where clients exchange node
embeddings v(t)i,n, i.e., smashed data, to their neighbors.
Here, as in CFA, the set of neighbors is built starting
from the communication links between agents, which may
vary according to the environment. However, in this work,
we focus on the proposal of a new distributed architecture,
rather than focusing on tackling specific non-IID distributions
among agents.

The inference starts with the initialization by each
individual client i of the node embeddings v(0)i,n, ∀j ∈ V ,
and incoming edge embeddings, e(0)j→i,n, ∀j ∈ Ni. Note
that this initialization can be performed with whatever local
NN which is not required to retain the same parameters
across all clients. Then, for T message passing iterations, the
following steps are performed by each client:
1) Node embeddings exchange: at message passing itera-

tion t = 1, . . . ,T , each client i broadcasts v(t−1)i,n and
receives v(t−1)j,n from its neighbors j ∈ Ni. Note that,

as in SL, the messages exchanged (smashed data) do not
disclose private information.

2) Edge and node embeddings update: at message passing
iteration t = 1, . . . ,T , the edge embeddings are updated
as:

e(t)j→i,n = ge
(
v(t−1)j,n , v(t−1)i,n , e(t−1)j→i,n

)
, ∀j ∈ Ni. (9)

Subsequently, the node embeddings are updated as:

v(t)i,n = gv
(
v(t−1)i,n , 8

(
{e(t)j→i,n}j ∈ Ni

))
. (10)

We would like to point out here that (9) and (10) can be
modified accordingly to the type of task, input features
or particular requirements, without altering the inference
structure.

3) State inference: lastly, after T message passing steps,
each client i predicts the estimate:

ŷi,n = ŷ(T )i,n = g(regres)v

(
v(T )i,n

)
. (11)

A graphical representation of the steps is reported in Figure 3.

C. DESIGN OF DISTRIBUTED TRAINING IN SCFL
To design the fully-distributed training procedure peculiar of
SCFL, we first observe that the distributed inference relies on
the fact that each client needs the same parameters for gv(·),
g(regres)v (·) and ge(·), as in centralized MPNN. To enforce this
behaviour, we propose three distributed training procedures
which are derived from SL and consensus-FL. In particular,
SL is adopted for performing a complete distributed inference
and back-propagation, while consensus-FL is exploited for
convergence to a unique, globally aggregated model. This
is especially pertinent, as convergence to a global model
has been demonstrated to be attainable with as few as two
neighbors, affirming the efficiency of the process [29]. Given
the fact that the SL is implemented with a message passing
procedure, we can choose the number and type of operations
within each message passing iteration. This results in three
distinct procedures that we denote as 3SS, 2SS andD-MPNN.
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Algorithm 3 3-Steps Strategy
1: procedure 3SS(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni

8: compute ∇L(t)i,n(wi,n) ▷ Backward-pass
9: broadcast ∇L(t)i,n(wi,n)
10: receive {∇L(t)j,n(wj,n)}j∈Ni

11: ∇L(t)i,n(wi,n)←
∑

j′∈Ni∗
Sj′∇L(t)j′,n/

∑
j∈Ni∗

Sj

12: wi,n← wi,n − η∇L(t)i,n(wi,n) ▷ Local SGD
13: end for
14: end for
15: end procedure

For the sake of notation consistency, we adhere to the notation
used in Figure 2, i.e., representing the NN models gv(·),
g(regres)v (·) and ge(·) of client i as wi and the exchange of node
embedding v(t)i,n as F(wi).

In the following, we describe the three proposed SCFL
distributed training strategies, i.e., 3SS, 2SS and D-MPNN,
highlighting their distinct features for the distributed training
of a single epoch. Note that each of them requires T message
passing iterations and a consensus-FL step.

1) 3SS
It is constituted by three operations within each message
passing iterations, i.e., forward-step, a gradient exchange, and
a consensus-FL step, which closely resembles SFL in terms
of logical steps. The distinction with respect to SFL is that,
due to the absence of a PS, each client already holds all the
gradients from its neighbors, without needing an additional
exchange of model parameters. Consequently, during the
consensus-FL step, the back-propagation is computed using
a weighted average of all received gradients, similar to what
occurs in CFA with gradient exchange. A graphical repre-
sentation of the 3SS distributed training strategy for SCFL
is given in Figure 4a, while its pseudo-code is highlighted in
Algorithm 3.

2) 2SS
It consists of two steps to be performed for T iterations,
i.e., a forward-step and a back-propagation step, which are
independently computed by each client after the exchange
of smashed data. If 2SS is halted after the second step,
each client would have distinct model parameters since it
retains different private local data for computing the loss
function. It follows that, to ensure convergence to a single
global model, i.e., identical parameters for gv(·), g

(regres)
v (·),

and ge(·) across all devices, a final step of CFA with model
exchange is performed at the end of each training epoch.

Algorithm 4 2-Steps Strategy
1: procedure 2SS(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni

8: compute ∇L(t)i,n(wi,n) ▷ Backward-pass
9: wi,n← wi,n − η∇L(t)i,n(wi,n) ▷ Local SGD

10: end for
11: broadcast wi,n
12: receive {wj,n}j∈Ni
13: wi,n←

∑
j′∈Ni∗

Sj′wj′,n/
∑

j∈Ni∗
Sj

14: end for
15: end procedure

Algorithm 5 Distributed-MPNN Strategy
1: procedure D-MPNN(Ni, η) ▷ Run on client i
2: initialize wi,0← client i
3: for each round n = 1, . . . ,N do ▷ Training loop
4: for each message passing iter t = 1, . . . ,T do
5: compute F (t)(wi,n) ▷ Forward-pass
6: broadcast F (t)(wi,n)
7: receive {F (t)(wj,n)}j∈Ni
8: end for
9: compute ∇Li,n(wi,n) ▷ Backward-pass
10: wi,n← wi,n − η∇Li,n(wi,n) ▷ Local SGD
11: broadcast wi,n
12: receive {wj,n}j∈Ni
13: wi,n←

∑
j′∈Ni∗

Sj′wj′,n/
∑

j∈Ni∗
Sj

14: end for
15: end procedure

A graphical representation of the 2SS distributed training
strategy for SCFL is given in Figure 4b, while its pseudo-code
is highlighted in Algorithm 4.

3) D-MPNN
This strategy resembles a centralized MPNN training, with
the key innovative aspect that it is constituted by fully-
distributed steps. This is because first it performs T steps
of forward propagation, thus following (5), (6) and (7), and
then back-propagation is computed. The key difference here
is that after T forward propagations, an individual client back-
propagation and a consensus-FL step are executed. Since
these last two steps precisely represent the CFA algorithm,
we are assured that, under specific conditions, the solution
converges to the centralized MPNN outcome, i.e., adopting
the centralized loss in (8). A graphical representation of
the D-MPNN distributed training strategy for SCFL is
given in Figure 4, while its pseudo-code is highlighted in
Algorithm 5.
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D. INNOVATION ASPECTS OF SCFL OVERCOMING
LIMITATIONS OF CURRENT FL ARCHITECTURES
The proposed SCFL framework has different peculiar aspects
that overcome the limitations of existing FL approaches.
First, it embodies the SL paradigm which permits to train
complex DL models within resource-constrained devices by
exploiting a message passing procedure derived fromMPNN.
As a result, the overall bias of the whole derived model is
reduced compared to individual client models, consequently
enhancing its ability to more accurately identify the true
underlying patterns within the data. Second, given theMPNN
properties of scalability with the number of nodes, the SCFL
framework can be trained on whatever number of clients and,
more importantly, can be tested and scaled over complex
network topologies without altering the procedure. Lastly,
the proposed SCFL is the only method that permits to
train DL models in physically separated clients where the
inference procedure of each client is strictly dependent on
the inference of its neighbors. This fully-distributed training
features is of remarkable importance in scenarios where the
information retained by the neighbors is necessary for the
accomplishment of a task, such as CP which is examined in
next section.

IV. SIMULATION EXPERIMENTS
In this section, we first describe a practical application for
the SCFL framework, which consists in a fully-distributed
procedure for CP in a set of connected agents (e.g., vehicles).
Then, we detail the simulated scenario and we present a set
of numerical results.

A. USE CASE: COOPERATIVE POSITIONING
We consider a cooperative localization scenario where a set
of mobile agents aim to estimate their positions (or state)
based on ego-agent location measurements, e.g., noisy agent
position, and inter-agent measurements, e.g., agent pairwise-
distances. Agents cannot rely on a central coordinator (i.e.,
the PS), only on data exchange with neighbors.

The state of agent i at time n is denoted as yi,n.
Note that here, since we consider a dynamic scenario
where the agents move during training and inference,
the index n denotes both the time-step and the epoch
index. Thus, the network graph becomes n-dependent as
Gn = (Vn, En). We define with z(A)i,n = f (A)

(
yi,n,w

(A)
i,n

)
and

z(A2A)j→i,n = f (A2A)
(
yj,n, yi,n,w

(A2A)
i,n

)
, ∀j ∈ Ni,n, the state and

inter-agent measurement, respectively. w(A)
i,n and w(A2A)

i,n are
the state and inter-agent measurement noises, respectively,
while f (A)(·) and f (A2A)(·) are two non-linear functions.
We emphasize that the measurements do not depend on
the message passing index t . This follows the assumption
that each agent has only one measurement per time-step n,
and the time interval between two sub-sequent time-steps is
significantly larger than the one between message passing

iterations. We refer to Figure 5 for a visual representation of
the CP scenario with four agents.

To address this specific CP task, we adopt the following
models. For node and edge initialization, we adopt three NNs,
i.e., g(LSTM)

v (·), g(A)v (·) and g(A2A)e (·), whose parameters and
gradients are never shared across agents since they are unique
and specific for each agent. A Long Short-Term Memory
(LSTM) NN is required to introduce n-dependence relations
between time-consecutive state-predictions. At message
passing iteration t = 0, the initialization and measurement
encoding is as follows:

v(0)i,n = g(LSTM)
v (̂yi,n−1), (12)

zh
(A)
i,n = g(A)v

(
z(A)i,n

)
, (13)

zh
(A2A)
j→i,n = g(A2A)e

(
z(A2A)j→i,n

)
, ∀j ∈ Ni,n. (14)

At n = 0, the inference is initialized as ŷi,n−1 ≜ E[p(yi,0)],
where p(yi,0) is the prior knowledge of the agent position.
On the contrary, the edge and node embedding update are
computed according to:

e(t)j→i,n = ge
(
e(t−1)j→i,n, zh

(A2A)
j→i,n , v

(t−1)
j,n , v(t−1)i,n

)
, ∀j ∈ Ni,n,

(15)

v(t)i,n = gv
(
v(t−1)i,n , v(0)i,n, zh

(A)
i,n , 8

(
{e(t)j→i,n}j ∈ Ni,n

))
. (16)

Finally, after T message passing steps, the state prediction is
performed as in (11).

B. SIMULATION SCENARIO
We consider a 2D localization scenario where In =

16 connected agents move within a 200 m × 200m area for
100 timesteps sampled at 1 s. The agent trajectories create
a spiral shape pattern, starting from the origin and moving
towards the area’s limits as a spiral (see Figure 6). The
graph Gn is fully-connected, i.e., each agent is connected
to all the others. The agent’s state is yi,n = [pTi,nṗ

T
i,n]

T,
where pi,n ∈ R2 and ṗi,n ∈ R2 represent the 2D position
and velocity, respectively. The measurements are defined
as z(A)i,n = yi,n + w(A)

i,n and z(A2A)j→i,n = ∥pj,n − pi,n∥2 + w(A2A)
i,n .

We model the agent kinematics with a constant velocity
motion model, unless stated otherwise, while the state
measurements and inter-agent measurements follow zero-
mean Gaussian distributions, i.e., w(A)

i,n ∼ N
(
04,Cw(A)

)
,

with Cw(A) = diag
(
σ 2
p,w(A) , σ

2
p,w(A) , σ

2
ṗ,w(A) , σ

2
ṗ,w(A)

)
, and

w(A2A)
i,n ∼ N

(
0, σ 2

w(A2A)

)
, with standard deviations σp,w(A) =

5 m, σṗ,w(A) = 1 m/s, and σw(A2A) = 2 m.
The network of agents is trained on 1,000 instances

of constant velocity linear trajectories, with ṗi,n ∈

[−10, 10] m/s, where each instance is composed of In =
16 connected agents. To enhance model convergence and
prevent biases, we standardized all samples by applying a
min-max scaler, ensuring each feature falls within the [0, 1]
range. This is done with prior knowledge of agent position,
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FIGURE 4. Visualization of SCFL distributed training procedure according to three types of strategies. a) 3SS; b) 2SS and c) D-MPNN. The right arrow
highlights the flow of information, i.e., the sequential order of operations to be performed for updating the model parameters during training. Note
that in all the SCFL strategies, the PS is missing, being the training achieved in a fully-distributed manner.

i.e., pi,n ∈ [−100, 100]m, and velocity, i.e., ṗi,n ∈
[−10, 10]m/s.We trained both the centralized and distributed
models for a total of 100 epochs, using a batch size
of 32 samples and randomizing the dataset order at the
beginning of each epoch. Here, a sample refers to a trajectory

instance composed of N = 10 timesteps, i.e., the training
length sequence of the LSTM model.

The LSTM has been modified from [61], employing
only two layers and a hidden output dimension, or node
embeddings, of 16. The NNs of the MPNN model are
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FIGURE 5. CP task with four agents, represented by circles. The
measurements are represented as black dotted arrows, while trajectory
paths are indicated with colored solid arrows. For ease of notation,
we omit the epoch index n.

Multi-Layer Perceptrons (MLPs) with two hidden layers and
a neuron count of [80, 16] with Gaussian Error Linear Units
(GELU) activation functions. The number ofmessage passing
steps is T = 10. Lastly, we consider dimension of 16 for edge
embeddings, state, and inter-agent measurements.

For model training and testing, we used PyTorch version
1.12 and Python version 3.7.11, while simulations were exe-
cuted on a workstation featuring an Intel(R) Xeon(R) Silver
4210R CPU operating at 2.40 GHz, 96 GB of RAM, and a
Quadro RTX 6000 24 GB GPU. Regarding the optimizer,
we employed the Adam optimization algorithm [59] with
an initial learning rate of 0.0001 and momentum values of
0.9 and 0.999 for β1 and β2, respectively.

C. NUMERICAL RESULTS
1) TRAINING
In a first assessment, we compare the performances of the
three proposed SCFL strategies (i.e., 3SS, 2SS andD-MPNN)
with respect to a centralizedMPNN solutionwhere all clients,
i.e., nodes of the graph, lie in a single machine. In Figure 7
we show the Root Mean Square Error (RMSE) of the position
and velocity estimates evaluated on the validation dataset for
each epoch of the training (Figure 7a) and corresponding wall
clock time (Figure 7b).

Observing the results, we note that at corresponding
epoch, the best performances are reached by the distributed
D-MPNN and the centralized solution, followed by 2SS
and 3SS implementations. This result suggests that the
cooperative forwarding pass of the training should be
performed for all message passing iterations in the first stage
of the training (see Figure 4c). In contrast, increasing the
number of operations in message passing, as in 3SS and 2SS,
leads to worse performances.We believe that this is due to the
fact that performing all forwarding iterations at the beginning

FIGURE 6. Example of spiral scenario composed of 16 cooperating agents
represented by different colors.

allows client models to fully exploit the potential of message
passing operations, without interrupting the flow of refined
information within the node and edge embeddings.

An interesting observation is that the proposed SCFL
method with D-MPNN outperforms also the centralized
solution. To explain this behavior, we note in Figure 7b
that the centralized solution completes training in much less
time, and its RMSE is similar to the one of D-MPNN,
only with less machine time spent on training. Therefore,
we assert that the centralized solution and distributed
D-MPNN exhibit practically the same performance with the
same computational resources. The reason why D-MPNN
converges faster in terms of epochs is that step 2 of D-MPNN,
which involves gradient computation and back-propagation,
is performed individually by each client, thereby increasing
the computations linearly with the number of clients. In fully-
distributed networks of agents, this feature can lead a
significant advantage in speeding up the training process.

2) CONVERGENCE
This experiment aims at verifying the convergence of the
three proposed fully-distributed SCFL strategies with respect
to centralized training. In other words, the objective is to
assess whether or not the distributed training among clients
is equivalent or very well approximated to the centralized
architecture in terms of client local model parameters.
To this aim, we studied how much the distributions of
gv(·), g

(regres)
v (·) and ge(·) vary between the centralized and

distributed strategies.
In Figure 8 we show the Kullback-Leibler (KL) divergence

of the model parameter distributions with respect to the
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FIGURE 7. Comparison of the three proposed SCFL strategies with respect to a centralized solution. a) RMSE of position and velocity on the validation
set for each training epoch. b) RMSE of position and velocity on the validation set with respect to the wall clock time of the training.

centralized model parameters for each epoch of training.
We start noticing that, in 3SS (Figure 8a), the KL divergence
seems somehow to diverge from the centralized solution for
all the three local models. This confirms that performing
many operations in a single message passing iteration, i.e.,
a forward-step, a gradient exchange, and a consensus-FL step,
is not beneficial as it does not fully exploit the message
passing elaboration of latent features. On the contrary,
in 2SS (Figure 8b), we observe a neutral behavior with local
parameter distributions that tend to hold the same distance
with respect to the centralized solution. This is due to the fact
that steps 1 and 2 (see Figure 4b) lead to a more biased local
model, since each client adopts its private data to compute the
gradients and perform back-propagation, while step 3 drives
to a common global model which resembles the centralized
solution exactly as in FL. Finally, D-MPNN (Figure 8c),
which holds the best performances, clearly converges to the
centralized approach, as the logical steps of the distributed
algorithm match the classical MPNN training.

3) BASELINE COMPARISON
In this assessment, we compare the proposed D-MPNN
method with the current state-of-the-art D-ML algorithm,

i.e., CFA, both in terms of performances and communication
efficiency. Since in CFA there is no exchange of smashed
data, we train the same NNs present in D-MPNN without
the message passing procedure. We can consider the CFA
as a contraction of D-MPNN, where the T iterations are
performed within each agent and where the cooperation is
only present in the last step of weights exchange.

In Figure 9 we show the validation results of D-MPNN
ad CFA varying the number of training epochs. We also
connect the points in the two curves that correspond to
the same training time, allowing to evaluate the trade-off
between performances and training efficiency. From the
results, we notice that the D-MPNN outperforms CFA at
every epoch, both in terms of convergence speed and achieved
RMSE. This is mainly due to the message passing procedure,
which permits to further elaborate the input measurements
by exploiting the neighbors smashed data. Despite the longer
epoch duration due to the message passing, we observe that,
at the same time instant, the D-MPNN constantly achieves
better performances. This demonstrates that the message
passing procedure can indeed reduce the biases of the simpler
independent models within the agents, in the same way as in
conventional centralized MPNN.
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FIGURE 8. KL divergence, at varying training epochs, of the local model parameter distributions between the centralized and the SCFL distributed training
strategies, i.e., a) 3SS; b) 2SS and c) D-MPNN.

FIGURE 9. Comparison of the proposed SCFL D-MPNN method with
respect to the CFA algorithm in terms of RMSE. The points related to the
same training time are connected by dashed lines.

V. CONCLUSION
This paper addressed the problem of distributed inference and
model training in a network of physically separated clients.
We started by reviewing the parallelism between PS-based
FL, SL and SFL methods which is used as a starting point
for the design of a fully-distributed consensus-based SL,
named SCFL. In this framework, clients have to forward
the smashed data to their neighbors for completing the

inference. We developed three distributed training strategies,
namely 3SS, 2SS and D-MPNN, which take inspiration from
centralized MPNN where the message passing iterations
resemble the split forwarding, while preserving local data
privacy. These strategies mainly differ for the type of
operations within each single message passing iteration, thus
obtaining different performances under the same conditions.
The main advantages are the local data privacy preservation,
as in FL and SL, since only smashed data, gradients
and model parameters are exchanged, and the complete
independence on a centralized entity (i.e., a PS) to perform
the training procedure.

We proved the efficacy of the proposed SCFL paradigm in
a CP use-case where distributed moving clients (i.e., agents)
have to self-localize based on local ego-agent and inter-
agents measurements. For the specific task, we developed a
custom model structure composed of client-specific models,
i.e., encoding NNs and an LSTM model to learn the
agent mobility, and shared models, i.e., edge, node and
regressor NNs. Comparing the three distributed strategies
with respect to a centralized solution, we found that the
distributed strategies highly differ in terms of performance
and convergence capabilities. Specifically, the best learning
strategy, i.e., D-MPNN, is the one that takes the most

VOLUME 12, 2024 119547

Chapter 5. Federated and Split Learning



B. Camajori Tedeschini et al.: SCFL: An Approach for Distributed Training and Inference

advantage from message passing by first performing the
cooperative inference through node embeddings exchange,
and then applying individual back-propagation with a final
consensus-FL step. This strategy efficiently combines the
computational power of all clients as they were on a single
machine and strives towards the centralizedmodel parameters
at convergence.

We expect distributed training and inference to play a
crucial role in forthcoming years, especially in applications
such as cooperative sensing in connected automated vehicles,
distributed manufacturing control, and autonomous multi-
agent robot systems, where collaboration is requested to
achieve a shared objective. Relevant challenges are rep-
resented by the requirement of fast convergence in time-
sensitive tasks and the management of non-IID data in
heterogeneous settings.
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In this chapter, we present a data-driven approach for extending the ICP framework and
overcoming its main limitations due to the cyclicity of the factor graph. In particular, we
propose a MARL algorithm, namely ICP-MAPPO, tailored for highly non-stationary
learning where the agent network, i.e., a vehicular network, continuously varies in
time. We model the problem as a Dec-POMDP where agents aim at performing CP by
exploiting exchanged measurements, comprising detection of passive objects that act
as reference points to refine the predictions. The agents predict the state evolution by
beliefs learning and follow a policy that dictates which links deactivate to simultaneously
improve performances and achieve high communication efficiency. To solve the issue
of partial observability of the state, we employ the C-ML paradigm for training, with
subsequent deployment of the models for decentralized execution. Results show that
this new scheme, named centralized-training and dynamic-decentralized-execution, is
able to outperform the ICP algorithm when it comes to both positioning accuracy, speed
of convergence and efficiency of neighbors’ cooperation.
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Abstract—With the advent of cooperative intelligent transport
systems (C-ITS) and vehicle-to-everything (V2X) communica-
tions, cooperative positioning based on V2X sharing of location
information has been emerging as a promising augmentation sys-
tem for conventional satellite navigation. An example is implicit
cooperative positioning (ICP) which relies on Bayesian filtering
for cooperative sensing of targets that are used as reference
points for improving vehicle positioning. However, ICP methods
rely on pre-determined models which makes them sub-optimal in
case of non-Gaussian non-linear models or complex cooperation
graphs. To address these limitations, the paper proposes a
decentralized-partially observable Markov decision process (Dec-
POMDP) framework, paired with deep multi-agent reinforcement
learning (MARL) algorithms. We introduce a novel ICP-multi-
agent proximal policy optimization (MAPPO) algorithm where
distributed agents (i.e., vehicles) dynamically activate/deactivate
the radio links with the neighbors to optimize the communication
efficiency, still guaranteeing accurate positioning. We reproduce
a realistic C-ITS scenario with CARLA simulator, where vehicles
move according to real-world dynamics and communicate with
each other. Results show that the proposed ICP-MAPPO algo-
rithm, with its dynamic-decentralized-execution and centralized-
training schemes, outperforms state-of-the-art ICP methods by
21% in terms of positioning accuracy, and it can reduce the
communication overhead by following the optimal learned policy.

Index Terms—Multi-agent reinforcement learning, Dec-
POMDP, implicit cooperative positioning, Bayesian-filtering, mes-
sage passing algorithm.
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I. INTRODUCTION

COOPERATIVE POSITIONING (CP) represents a key
enabling feature for future automated mobility services

[1]–[8]. Modern vehicles leverage an on-board sensor suite
including global navigation satellite systems (GNSS), light
detection and ranging (LIDAR), radio detection and ranging
(RADAR), and stereo cameras to perceive the surround-
ing environment and perform automated maneuvers [9]–[13].
However, these sensors are not yet able to meet the loca-
tion accuracy requirements of autonomous driving in harsh
environments such as dense urban areas or canyons [14].
Recently, methods have been proposed to combine localiza-
tion sensors with the latest 5th generation (5G) of cellular
communications [15]–[20], depicting a new horizon for mobile
connectivity and positioning services [21]–[24]. 5G vehicle-to-
everything (V2X) communications are envisioned as crucial in
the evolution towards cooperative intelligent transport systems
(C-ITS) [25]–[28] by enabling simultaneous communication
and localization functionalities [29]–[31]. CP among vehicles,
by means of sidelink V2X communications, can be used to
overcome the GNSS performance degradation and guarantee
a seamless high-accuracy positioning (HAP) service [32]–
[36]. The complexity lies in the resource-intensive nature of
CP [37], which involves vehicles interacting with each other
repeatedly to determine positions. In particular, this process
demands significant power and bandwidth [38]–[40], while
also facing challenges in scheduling transmissions due to the
intricate measurement and information fusion processes [41]–
[43]. These factors contribute to larger delays and scalability
issues in the optimization problems related to cooperative
localization [44], [45].

Conventional approaches, such as implicit cooperative po-
sitioning (ICP) [32], [46], integrate GNSS and passive sen-
sor data through Bayesian-filtering, e.g., centralized extended
Kalman filter (EKF) or message passing algorithm (MPA),
to coherently fuse the measurements at different vehicles. In
particular, in ICP, passive objects such as poles, road signs, or
traffic lights, are cooperatively detected by multiple vehicles
and exploited as noisy anchor points to enhance the vehicle
location accuracy. On the one hand, in case of a centralized
data-processing architecture gathering all vehicles’ measure-
ments, convergence can be achieved, but at the expense of high
computational complexity. On the other hand, standard MPA
algorithms are optimal only in case of Gaussian-linear models
and acyclic factor graphs [47]–[50]. Recent solutions tried
to limit the aforementioned problems by either performing
fully-distributed particle-based MPA between vehicles [34] or
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auto-adjusting the parameters of time-varying models [51].
Still, particle-based solutions require high communication and
computational loads which limit their scalability.

In recent years, there has been a growing reliance on
machine learning (ML) tools to overcome the limits of conven-
tional approaches’ issues, especially regarding scalability and
non-linear models [52]–[55]. In particular, the reinforcement
learning (RL) paradigm [56]–[58] and its deep learning (DL)-
based version [59]–[61] are notably effective in challenging
single-agent Markov decision processes (MDPs) where labeled
data are scarce or costly. They also excel in environments
where the agent’s actions directly impact the state of the
environment and long-term rewards are prioritized [62]–[64].
Indeed, RL can be seen as a generalization of Bayesian
filtering where the agents do not just predict the state through
belief computation but also make decisions to maximize long-
term rewards, with a policy guiding the decision from state to
action. RL is especially well-suited for complex scenarios with
extensive state and action spaces, where deep neural networks
(DNNs) can efficiently approximate the high-dimensional,
nonlinear functions that represent such policies [59], [65].
This approach has been successfully applied in several fields,
varying from rate and power control [66]–[69] to dynamic
spectrum access in multi-user scenarios and efficient schedul-
ing in vehicular networks [70]–[73].

In case more than one agent acts in the environment and the
state is not directly observable, we categorize the framework as
multi-agent RL (MARL) [74] and the system as decentralized-
partially observable MDP (Dec-POMDP) [75]–[77]. MARL
involves independent agents whose actions influence each
other’s perception of the environment, and it is often solved
with the usage of recurrent neural network (RNN), exploiting
histories of observations and actions [78]. MARL algorithms,
similarly to RL methods, can be divided into two categories:
Q-learning and policy optimization (PO) (which comprises
actor-critic methods) [79]–[81]. Q-learning focuses on esti-
mating the long-term reward (i.e., Q-value) of each action,
selecting the action with the highest Q-value and indirectly
(i.e., not explicitly) formulating the policy [82]–[84]. On the
other hand, PO directly optimizes the policy through the
gradient of the total reward relative to policy parameters [85]–
[88]. Multi-agent PO algorithms, especially when combined
with a centralized agent learning and a decentralized execution
of the policies (e.g., multi-agent proximal policy optimization
(MAPPO) [85]), have shown remarkable performances with
respect to Q-learning algorithms. This is mainly due to their
lack of learning biases and improved sample efficiency thanks
to training guidelines like parameter sharing [89]–[91].

Concerning MARL for CP, most of the literature works
focus on intelligent unmanned aerial vehicles (UAVs) for target
tracking [92] or agent scheduling aided for improving CP
[93]. In [92], the objective was to maneuver the agents to
track passive objects. However, they considered the state of
the agents as known, while the main challenge is to estimate
from the measurements their state jointly with target sensing.
In [93], the state was estimated with conventional MPA, while
the objective was to activate links between agents to optimize
cooperative positioning performances (i.e., by improving the

positioning error bound (PEB)). The drawbacks of this method
are that RL is not actively used for positioning but rather as an
assistance method to MPA, and that they consider one agent
only, i.e., a single link, at the time instead of exploiting the
full potential of multi-agent systems (MASs).

Considering the above review, the fundamental unresolved
questions related to CP are as follows: i) how to design a
decentralized MARL algorithm that simultaneously performs
the computation of the agent state beliefs and the scheduling of
the agent-to-agent communication resources, optimizing both
location accuracy and communication efficiency; ii) what po-
sitioning accuracy improvement can be achieved with respect
to state-of-the-art Bayesian approaches like ICP that exploit
passive object detections between multiple agents; iii) what
are the main trade-offs between positioning improvement and
communication resource optimization. Addressing these ques-
tions is mandatory for enabling the employment in connected
automated vehicles (CAVs), in particular the ability to scale
and handle real-word impairments encountered in vehicular
scenarios. In this perspective, the goals of this paper are to
develop agent-specific policies for selecting communication
scheduling between neighbors and, at the same time, learning
a representation of the world dynamics that takes advantage of
the selected neighbors’ measurements. We advocate MARL-
based ICP, a new paradigm in which PO RL algorithms
are exploited to extend the conventional Bayesian-filtering
approach incorporating the actions of the agents. The main
idea is to learn from data the relation between agents’ states
and passive feature observations (see Fig. 1 for a visualization
of the cooperative scenario) by selecting only those links to the
neighbors that can provide a significant gain to the positioning
accuracy. This approach not only improves the localization
performance but also enhances the communication efficiency.

In this paper, we propose a new MARL algorithm, namely
ICP-MAPPO, expressly designed for performing efficient dis-
tributed positioning through the MARL framework and ex-
tending the conventional Bayesian-filtering ICP to data-driven
approaches. The key contributions are as follows:

• We revise the ICP Bayesian-filtering approach analyzing the
current limitations and investigating more general frame-
works for solution, drawing from the Dec-POMDP system
model and MARL methods.
• We reformulate the ICP methodology into a MARL problem

and we design the new ICP-MAPPO solution, relying on
dynamic-decentralized-execution and training schemes to
simultaneously optimize the Bayesian-filtering and MARL
objectives.
• We validate the proposed ICP-MAPPO approach in a re-

alistic C-ITS scenario simulated with CARLA [94], where
CAVs perform CP by exploiting passive targets, i.e., poles,
distributed over the scene.
• We perform a comparison with the state-of-the-art ICP

algorithm [32] and single-agent-based algorithms. We prove
the superior performances of the proposed algorithm both
in terms of positioning error and communication efficiency.

For easy reference, Table I lists the main abbreviations used
throughout the paper.
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k,t

o
(A2T)
i,k,t

Fig. 1. Top-view of the cooperative scenario with twenty vehicles (blue
vehicle icons), detected poles (red circles) and detections (black lines).

TABLE I
LIST OF MAIN ABBREVIATIONS

Acronym Definition
A2A Agent-to-agent
A2T Agent-to-target
Dec-POMDP Decentralized-partially observable Markov decision

process
EKF Extended Kalman Filter
ICP Implicit cooperative positioning
LSTM Long short-term memory
MLP Multi-layer perceptron
MAPPO Multi-agent proximal policy optimization
MARL Multi-agent reinforcement learning
MPA Message passing algorithm

The rest of this paper is structured as follows. Sec. II
describes the system model of cooperative agents. Sec. III
reviews the ICP Bayesian-filtering. Sec. IV presents the
MARL framework and the proposed ICP-MAPPO execution
and training schemes. Sec. V provides information about the
simulated scenario and the results. Finally, Sec. VI draws the
conclusions.

Notations

Random variables are displayed in sans serif, upright fonts;
their realizations in serif, italic fonts. Vectors and matrices are
denoted by bold lowercase and uppercase letters, respectively.
For example, a random variable and its realization are denoted
by x and x; a random vector and its realization are denoted by
x and x; a random matrix and its realization are denoted by X
andX , respectively. Random sets and their realizations are de-

TABLE II
LIST OF NOTATIONS

Notation Definition
N , K Number of agents and passive objects
si,t, ai,t, oi,t State, action and observation of agent i at time t

hb
i,t, hV

i,t History in belief and critic NNs of agent i at time t

τ, τt Trajectory and transition at time t

rt, Rt Reward and reward-to-go at time t

πθ , Vφ, bψ Actor, critic and beliefs NNs
H , Lτ Horizon and trajectory length
Ai,t Advantage function of agent i at time t

α, β, ϵ Entropy, reward and clipping coefficients
γ, µ Discount factor and learning rate

noted by up-right sans serif and calligraphic font, respectively.
For example, a random set and its realization are denoted by X
and X , respectively. The function px(x), and simply p(x) when
there is no ambiguity, denotes the probability density function
(PDF) of x. Notations X⊤, X∗ and XH indicate the matrix
transposition, conjugation and conjugate transposition. With
the notation x ∼ N (µ, σ2) we indicate a Gaussian random
variable x with mean µ and standard deviation σ, whose
PDF is denoted by N (x; µ, σ2). We use E{·} and V{·} to
denote the expectation and the variance of a random variable,
respectively. R and C stand for the set of real and complex
numbers, respectively. Finally, we define with blockdiag(·)
the block diagonal matrix whose diagonal contains the input
blocks matrices.

Notations and definitions of important quantities used in the
paper are summarized in Table II.

II. SYSTEM MODEL

We consider a vehicular network where a set of N vehicles
engage in cooperative localization as depicted in Fig. 1.
The connectivity graph for vehicle cooperation at time t is
Gt = (V, Et), with V = {1, 2, . . . , N} representing the set
of agents (vehicles), and Et the edges (communication links)
among them. Each agent i ∈ V in the network at time
t has a set of neighbors Ni,t, and it is assigned a state
s
(A)
i,t =

[
u

(A)⊤

i,t v
(A)⊤

i,t

]⊤
, where u

(A)
i,t and v

(A)
i,t are the 2D

position and velocity vectors, respectively, defined in a global
coordinate system. We denote with s

(A)
t =

[
s
(A)
i,t

]N

i=1
the

aggregate state of all the vehicles at time t. The kinematic
state transition of vehicle i at time t is modelled as

s
(A)
i,t = f (A)

(
s
(A)
i,t−1,w

(A)
i,t−1

)
(1)

where f (A)(·) is is a nonlinear function that governs the
dynamics of the vehicle’s state and w

(A)
i,t−1 represents the

driving noise process, incorporating the uncertainty in motion.
The model in (1) is associated to a state-transition PDF
denoted as T

(
s
(A)
i,t |s

(A)
i,t−1

)
≜ p

(
s
(A)
i,t |s

(A)
i,t−1

)
.

The scenario includes a set F = {1, 2, . . . , K} of K static
and passive objects (or targets, denoted as red circles in Fig. 1)
that vehicles can detect and localize by on-board sensors. To
facilitate detection by vehicle sensors, specific objects easily
identifiable and suitable for the purpose should be used. In
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this study, poles have been selected due to their ubiquity
(especially in urban areas), ease of recognition, and fixed
nature. Each pole k is described by a 2D position state s

(T)
k,t ,

which is assumed to be constant over time. As before, we
denote with s

(T)
t =

[
s
(T)
k,t

]
k∈F the aggregate state of all passive

objects at time t.
Vehicles are equipped with three distinct types of sensors.

The first is a GNSS receiver, providing an estimate of the
vehicle’s state s

(A)
i,t , modelled as

o
(GNSS)
i,t = H(GNSS) s

(A)
i,t + n

(GNSS)
i,t (2)

where n
(GNSS)
i,t ∼ N

(
02×2,R

(GNSS)
i,t

)
∈ R2×1 is a zero-

mean Gaussian noise with covarianceR(GNSS)
i,t = σ(GNSS)2I2,

and H(GNSS) = [I2 02×2] ∈ R2×4. From (2), we define
the GNSS likelihood function as p

(
o

(GNSS)
i,t |s(A)

i,t

)
, and with

o
(GNSS)
t =

[
o

(GNSS)
i,t

]N

i=1
the aggregate GNSS measurements

of all the vehicles at time t.
The second sensor refers to an active sensing technology

for sidelink positioning offering relative agent-to-agent (A2A)
location measurements for any pair of vehicles (i, j) ∈ Et

o
(A2A)
i,j,t = H(A2A)

(
s
(A)
i,t − s

(A)
j,t

)
+ n

(A2A)
i,j,t (3)

where H(A2A) = [I2 02×2] ∈ R2×4 and n
(A2A)
i,j,t ∼

N
(
02×2,R

(A2A)
i,j,t

)
is a zero-mean Gaussian noise with covari-

ance R(A2A)
i,j,t = σ(A2A)2I2. Additionally, agents have the ca-

pability to communicate with their neighbors to share location-
related data.

The third sensor type is a passive technology (e.g., RADAR,
LIDAR, camera, or any combination), used by vehicle i to
detect a set of passive objects Fi,t ⊆ F in proximity at time
t, and produce agent-to-target (A2T) measurements for each
object k ∈ Fi,t as

o
(A2T)
i,k,t = H(A2T)s

(A)
i,t − s

(T)
k,t + n

(A2T)
i,k,t (4)

where H(A2T) = [I2 02×2] ∈ R2×4 and n
(A2T)
i,k,t ∼

N
(
02×2,R

(A2T)
i,k,t

)
is a zero-mean Gaussian noise with covari-

ance R(A2T)
i,k,t = σ(A2T)2I2.

We denote with p
(
o

(A2A)
i,j,t |s

(A)
i,t , s

(A)
j,t

)
and

p
(
o

(A2T)
i,k,t |s

(A)
i,t , s

(T)
k,t

)
the A2A and A2T likeli-

hoods, respectively. Moreover, we denote with
oi,t =

[
o

(GNSS)
i,t

⊤
o

(A2A)
i,t

⊤
o

(A2T)
i,t

⊤]⊤
the vector of all

available measurements of vehicle i at time t, where
o

(A2A)
i,t =

[
o

(A2A)
i,j,t

]
j∈Ni,t

and o
(A2T)
i,t =

[
o

(A2T)
i,k,t

]
k∈Fi,t

. The
total number of unique A2A and A2T measurements
at time t is defined as N

(A2A)
t =

∑N
i=1 |Ni,t| and

N
(A2T)
t =

∑N
i=1 |Fi,t|, respectively. Note that the A2A

measurements are not subject to measurement-origin
uncertainty, i.e., it is not requested to perform any data
association algorithm for pairing them, as the enabling
technology is assumed to be active. On the other hand, the
A2T observations are unlabelled, as it is unknown which
object gives rise to a measurement, being them produced by a
passive sensing technology. In this work, we assume that data
association has already been performed at the vehicles (using,
e.g., methods [53]) and that each A2T measurement has been

correctly labeled with the originating target. We consider
perfect data association as we aim to derive the best-case
performances on the achievable accuracy of data-driven ICP
and compare it with conventional Bayesian ICP in the same
conditions. Interested readers can refer to [46] for details on
data association and their impact on inference algorithms.

III. BAYESIAN FILTERING

In this section, we describe the Bayesian filtering solution,
under the ICP framework, and then we highlight its main
drawbacks and improvements.

A. Centralized Implicit Cooperative Positioning

The objective of ICP is to concurrently estimate the state of
all vehicles and passive objects in the network. To this aim,
we define the set of all available measurements at time t as

ot = H st + nt (5)

where ot =
[
oi,t

]
i∈V ∈ R

(
2N+2N

(A2A)
t +2N

(A2T)
t

)
×1,

H is the matrix modeling the relation to the states,

defined as in [32], and st =
[
s
(A)
t

⊤
s
(T)
t

⊤]⊤ ∈ R
(
4N+2K

)
×1

is the aggregated state of the system. nt ∼ N
(
0,Rt

)

is the overall measurement noise with covariance
Rt = blockdiag

(
R

(GNSS)
t ,R

(A2A)
t ,R

(A2T)
t

)
, where

R
(GNSS)
t = blockdiag

(
R

(GNSS)
1,t , . . . ,R

(GNSS)
N,t

)
,

R
(A2A)
t = blockdiag

(
R

(A2A)
1,t , . . . ,R

(A2A)

N
(A2A)
t ,t

)
with

the ℓ-th entry given by R
(A2A)
ℓ,t = R

(A2A)
iℓ,jℓ,t , and

R
(A2T)
t = blockdiag

(
R

(A2T)
1,t , . . . ,R

(A2T)

N
(A2T)
t ,t

)
with

R
(A2T)
ℓ,t = R

(A2T)
iℓ,kℓ,t.

The overall state estimate ŝt is obtained through the
minimum mean square error (MMSE) estimator as

ŝt = E{st|o1:t} =

∫
st p

(
st|o1:t

)
dst (6)

where o1:t =
[
ot′

]t

t′=1
is the set of all aggregated measure-

ments up to time t and p
(
st|o1:t

)
is the posterior PDF defined

as [95]

p
(
st|o1:t

)
∝ p

(
ot|st

) ∫
p
(
st|st−1

)
p
(
st−1|o1:t−1

)
dst−1 .

(7)

We denote with b
(
si,t|o1:t

)
≜ p

(
si,t|o1:t

)
the marginal

posterior PDF, also called belief of agent i. Given that all
the measurements are mutually independent, the likelihood
function of st is computed as

p
(
ot|st

)
= p

(
o

(GNSS)
t |s(A)

t

) N∏

i=1

∏

j∈Ni,t

p
(
o

(A2A)
i,j,t |s

(A)
i,t , s

(A)
j,t

)

×
N∏

i=1

∏

k∈Fi,t

p
(
o

(A2T)
i,k,t |s

(A)
i,t , s

(T)
k,t

)
. (8)

For notation purposes, we will denote the likelihood function
also as O

(
ot|st

)
≜ p

(
ot|st

)
. In case the dynamic and

measurements models in (1) and (5), respectively, are linear
and with a Gaussian noise, the state estimate in (6) reduces to
a Kalman filter (KF) as described in [32], [46], with efficient
resolution in matrix form.
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Fig. 2. Convergence diagram flow of ICP methods.

B. Limitations of Bayesian ICP Methods

The centralized ICP approach is impractical for extensive
networks due to two major limitations: the single central
computing unit representing a point of failure, and its com-
putational complexity growing cubically with the number of
vehicles and passive objects [32]. To overcome such limita-
tions, distributed or consensus-based ICP algorithms have been
studied in the past [34]. However, their convergence to the
centralized solution is guaranteed only in acyclic (i.e., tree-
structured) factor graphs. Moreover, even in case of conver-
gence, the result would be optimal only with Gaussian and
linear models (i.e., in (1) and (5)). In all the other cases,
optimality is not guaranteed. In Fig. 2 we summarized all cases
and highlighted those where improvements could be provided
by new data-driven designs. We would like to point out that
in real-world dynamics, the factor graph is usually not acyclic
and the models are typically neither Gaussian nor linear.

The aim of this paper is to address the gap by proposing
a new decentralized data-driven solution to the ICP problem
suited for non-linear non-Gaussian models, overcoming the
limits of parametric Bayesian implementations based on EKF
or particle filter (PF) highlighted in Fig. 2. The proposed
distributed method also incorporates a data-driven optimiza-
tion of the cooperation graph by making the agents actively
and opportunistically select the cooperating neighbors so as
to minimize the communication signaling. In particular, to

address the limitations of conventional ICP solutions, we adopt
neural networks (NNs)-based models, which are able to learn
whatever non-linear function is hidden in the data thanks to the
universal approximation theorem. Specifically, a RNN learns
the non-linear motion and measurement models, whereas a
multi-layer perceptron (MLP) learns the non-linear relation
between link activation and state estimate. Moreover, NNs
have proven effective even in non-Gaussian settings [53], given
their ability to model complex probability distributions without
assuming any specific form. The centralized ICP method
reviewed in this section will be used as a benchmark to assess
the proposed method.

IV. MARL FOR COOPERATIVE POSITIONING

In this section, we first introduce the MARL framework
(Sec. IV-A) that will be used later for the design of the ICP-
MAPPO solution (Sec. IV-B). The ICP-MAPPO execution
and training schemes are reported in Sec. IV-C and IV-D,
respectively.

A. MARL Framework

We model the cooperative MAS as a finite-
horizon Dec-POMDP [75] defined by the tuple
⟨V,S,A, T0, T,O, O, R, γ, H⟩. We recall that the set V
refers to the cooperative agents, while the sets S and
A denote the state and action spaces, respectively. T0

is the initial state distribution at time t = 0, while
T

(
st|st−1,at

)
≜ p

(
st|st−1,at

)
is the state transition PDF

that, differently from the Bayesian-filtering system model
in Sec. II, now also includes the joint action realization
at =

[
ai,t

]
i∈V ∈ A and the joint state st ∈ S . At

each time t, the agents receive the joint observations
or measurements ot ∈ O which are sampled from the
distribution O

(
ot|at−1, st

)
≜ p

(
ot|at−1, st

)
. Note that here,

(8) is also function of the previous joint action of the agents
at−1, thus generalizing the concept of Bayesian-filtering.
R

(
st, at

)
= rt ∈ R denotes the instantaneous shared reward at

time t obtained from the reward function R, while γ ∈ [0, 1)
and H are the discount factor and time horizon of each
episode, respectively.

Since the states and rewards are not directly ob-
servable by the agents (partially observable MDP), each
agent i keeps track of the so-called histories defined as
hi,1:t = hi,t =

[
(ai,t′−1,oi,t′)

]t

t′=1
. Note that the histories

are a generalization of the aggregated measurements up to
time t in (6). Given a new observation oi,t, the state estimates
ŝi,t are produced by MMSE criterion from the belief PDF
bψ(si,t|oi,t,ai,t−1,hi,t−1) = pψ(si,t|oi,t,ai,t−1,hi,t−1) pa-
rameterized by ψ. Moreover, agents adopt a policy
πθ(ai,t|hi,t) = pθ(ai,t|hi,t) defined by θ to obtain the action
ai,t from histories hi,t. A full comparison between Bayesian
filtering and RL (i.e., its generalized version) can be found in
Fig. 3. By defining the reward-to-go Rt =

∑H−1
t′=t γt′−t rt′ as

the cumulative discounted reward from time t to the end of the
episode, the objective of the MARL problem is to maximize,
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Fig. 3. Comparison between Bayesian filtering and RL.

over the policy π, the expected cumulative discounted reward
from the beginning of the episode

max
π

J(π) = max
π

E{R0} (9)

which usually translates into optimizing the parameters of the
policy as θ∗ = argmaxθ J(πθ), with π∗

θ representing the
optimal policy.

B. MARL Solution to the ICP Problem

In standard Dec-POMDP, each agent only knows its lo-
cal actions and observations, thus resulting in possible non-
stationary learning problems from each agent’s perspec-
tive [96]. By training independent learners to optimize the
team reward (i.e., concurrent learning), we induce a change in
the dynamics of the environment as teammates continuously
adapt their behaviours throughout learning. On the contrary,
whenever a fully connected graph with communications is
present, the Dec-POMDP collapses to a centralized POMDP,
resulting in higher complexity and communication inefficien-
cies [89], [97], exactly as in centralized ICP. To solve the
issues of independent and centralized training-execution, the
state-of-the-art works exploit the so called centralized-training
and decentralized-execution paradigm. This framework per-
mits to learn the policies in a centralized way and then deploy
them in the network graph for decentralized execution [85],
[87], [98].

While this approach solves the problem in standard MARL
algorithms, in the context of ICP, having access to the neigh-
bors’ measurements would allow the positioning accuracy to

be significantly improved. Indeed, the objective of ICP is to
minimize over the belief b the error on the state estimate as

min
b

J(b) = min
b

E

{∑

t

∥∥st − ŝt

∥∥2

2

}
. (10)

Therefore, we here propose to define as actions the agent’s
selection of the communication links to the neighbors to
cooperate with. This allows to optimize the communication
efficiency with respect to the centralized solution. Formally,
we define the following Dec-POMDP:

1) Agents: The agent is identified by vehicle i ∈ V that
composes the connected network.

2) Actions: The action of agent i at time t is
ai,t =

[
ai,j,t

]N

j=1
, where ai,j,t ∈ {0, 1} represents the Boolean

decision of agent i to communicate with agent j.
3) States: Only the states of the vehicles s

(A)
t are consid-

ered, while the target states s
(T)
t are implicitly learned by the

NNs through the hidden features. Indeed, the system does not
output or keep track of the states of the targets, since they are
not needed as in the ICP Bayesian filtering formulation. In
other words, the ICP-MAPPO model just outputs the predicted
states of the agents, while the targets’ states are contained in
the hidden space, i.e., histories. Therefore, from now on, we
indicate with st the state of the agents s

(A)
t .

4) Observations: GNSS, A2A, and A2T measurements de-
scribed in Sec. II are the observations used in the Dec-POMDP
modeling, as they are the only output returned by the world
at inference time.

During the centralized training, the agents learn the rela-
tion between histories-actions, i.e., policy optimization, and
histories-states, i.e., belief optimization, while having access to
the full observable state st and measurements ot. Conversely,
during the decentralized execution, the agents decide how to
modify the network graph to achieve the best trade-off between
positioning accuracy and communication efficiency. We call
this approach centralized-training and dynamic-decentralized-
execution, as during execution, according to the agents’ ac-
tions, the coordination graph may vary, passing from fully-
connected to fully-decentralized according to the agent’s de-
cisions.

C. ICP-MAPPO Execution Scheme

For the belief and action prediction, we propose to employ
a long short-term memory (LSTM) and MLP, respectively. In
Fig. 4, we show a compact representation of the execution
within each agent. In particular, the NN functions are defined
as

ŝi,t,h
b
i,t = bψ(si,t|oi,t, āi,t−1, h̄

b
i,t−1) (11)

ai,t ∼ πθ(ai,t|hb
i,t) (12)

where oi,t is the ordered vector of all measurements of agent
i at time t defined as in Sec. II, āi,t =

[
āi,j,t

]N

j=1
includes the

sampled actions from the policy distribution adjusted with the
feasibility of the network connectivity as

āi,j,t =

{
ai,j,t if j ∈ Ni,t

−1 otherwise
(13)

Chapter 6. Multi-Agent Reinforcement Learning
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and h̄b
i,t are the hidden features of the belief LSTM which

contain a compressed representation of the histories of agent
i and all selected neighbors at the previous timestep

h̄b
i,t =

hb
i,t +

∑
j∈V h

b
j,t 1(āi,j,t == 1)

1 +
∑

j∈V 1(āi,j,t == 1)
(14)

where 1(·) is the indicator function that returns 1 if the
condition is true and 0 otherwise. We point out that the hidden
features hb

i,t include not only past actions and measurements
but also the implicit state estimates of the targets ŝ(T)

t , which
are never explicitly predicted by the system for output space
complexity reduction.

The key rationale behind the execution scheme is the
following. We employ the average operation in (14) to avoid
gradient divergence over the timesteps. We would like to notice
that the action decision at time t in (12) is mainly based on
the previous timestep information h̄b

i,t−1, as there is no way
for agent i to know a priori the measurements of its neighbors
hb

j,t , ∀j ∈ V, in order to activate the communications between
them. Moreover, the actions āi,t are given as input to the
belief LSTM for two main reasons. First, the information
about which agents were selected for measurements fusion
is necessary to coherently predict the state estimate. Second,
the negative action values imposed by the lack of possible
connectivity permit each agent to implicitly learn its index or
identification. In this way, the scalable and efficient parameter
sharing approach for training one single NN [89], instead of
agent-specific NNs, can be combined with agent differentiation
by index learning.

D. ICP-MAPPO Training Scheme

For the reward definition, we propose to use a function that,
looking at the future timestep, rewards the actions that gave
a predetermined improvement β on the positioning accuracy.
In other words, each agent i tries to answer the following
question: if I had chosen agent j′ instead of agent j, would
the performances have improved? This is formalized as

rt =





−1 if
∥∥st − ŝt

∥∥2

2
−

∥∥st+1 − ŝt+1

∥∥2

2
≤ −β

+1 if
∥∥st − ŝt

∥∥2

2
−

∥∥st+1 − ŝt+1

∥∥2

2
> β

+2 if − β <
∥∥st − ŝt

∥∥2

2
−

∥∥st+1 − ŝt+1

∥∥2

2
≤ β
(15)

where β is a hyper-parameter which regulates the improvement
step. At the beginning of the learning, if the improvement is
negative and bigger than β, the reward is negative as the actual
agent selection worsen the positioning accuracy. On the other
hand, if the improvement is positive and greater than β, the
reward is +1. Finally, when the learning starts converging and
the improvements become smaller, we introduce a long-term
reward of +2. Note that, while in conventional Dec-POMDPs
the reward directly depends on the actions, in the proposed
system the effect of the actions’ choice can be assessed only
at the next timestamp and only by measuring the positioning
error.

Regarding the type of MARL algorithm, we opted for PO
over Q-learning-based methods. This is because Q-learning

algorithms combined with DL have no guarantees of conver-
gence and retain a lot of bias (i.e., inaccurate state-action value
or Q-value). On the contrary, PO algorithms retain very low
bias since they directly optimize the objective function in (9)
and have been proven to outperform Q-learning methods in
MARL systems [87]. Moreover, while off-policy RL algo-
rithms use historical data to learn the policy, in the context
of CP, where state estimation is crucial, it is essential to
utilize the most up-to-date policy available since the action
sampling (i.e., radio link activation) directly influences the
positioning performances. Despite PO algorithms having an
intrinsic high variance, i.e., they require a lot of samples to
converge, this can be mitigated by the learning of the value
function, either V π(st) or Qπ(st,at), which estimates the
long-term reward given a specific state or state-action pair,
respectively. Specifically, we employ the state value function
defined as

V π(st) = E{Rt|st = st}
= Eat∼π,st+1∼T

{
R(st, at) + γV π(st+1)

}
. (16)

Usually, V π(st) cannot be directly computed due to the curse
of dimensionality and thus it is estimated by an additional NN
V̂φ(st) = Vφ(st), with parameters φ which are only employed
during training.

In standard single-agent RL frameworks, the policy opti-
mization problem is usually defined with the introduction of
trajectories τ = (s0, a0, . . . , sH , aH) by maximizing

J(πθ) = E τ∼p(τ |πθ)

{
R̃(τ)

}

=

H∑

t=0

Est∼p(st|πθ),at∼πθ(at|st)

{
γt R(st, at)

}
(17)

where R̃(τ) = R0 is the reward of trajectory τ,
p(τ |π) = T0

∏H−1
t=0 T (st+1|st,at) π(at|st) is the PDF of an

H-step trajectory, and p(st|π) is the state marginal of the
trajectory distribution induced by policy π. Standard REIN-
FORCE PO algorithms [99] update the policy parameters in
(17) in the direction of ∇θ J(πθ), which can be written as
(see Appendix A)

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{H−1∑

t=0

∇θ log
(
πθ(at|st)

)
At

}

(18)
where p(st,at|πθ) is the state-action marginal of the trajectory
distribution induced by policy π and At = At(st, at) is the
generic advantage function at time t [100], which quantifies
the convenience of taking a specific action at in a given state
st, compared to the average action’s expected return for that
state.

During successive optimization steps of (18) within the
same trajectory, where the objective is to maintain proximity
between new and old policy parameters, even minor variations
in the NN weights can lead to significant differences in perfor-
mance. Consequently, a single unfavorable optimization step
can drastically deteriorate the policy’s effectiveness. Recent
state-of-the-art methods, e.g., trust region policy optimization
(TRPO) [101] and proximal policy optimization (PPO) [102],
tried to solve this problem by taking the largest gradient
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Fig. 4. Dynamic-decentralized-execution scheme of the proposed ICP-MAPPO algorithm.

step size possible to improve performance, while maintaining
constraints on how close the new and old policies (i.e., πθold at
previous train step) are allowed to be. The constraint in TRPO
is enforced by Kullback–Leibler (KL) divergence and the
parameters are obtained by maximizing the surrogate objective
function as

θ = argmax
θ

E(st,at)∼p(st,at|πθ)

{ πθ(at|st)

πθold(at|st)
At(st, at)

}

s.t. Est∼p(st|πθ)

{
DKL

(
πθ(·|st)

∥∥πθold(·|st)
)}
≤ ϵ

(19)
which resulted in a second-order optimization method. On the
contrary, PPO and its recent multi-agent version MAPPO use
a much more efficient first-order method that exploits clipping
to remove incentives for the new policy to get far from the
old policy.

In this paper, we adopt three loss functions: L(φ) and L(θ)
derived from the MAPPO scheme to train the state-value and
policy NNs, respectively, and L(ψ) to train the belief NN.
πθ and Vφ are called actor and critic, respectively, since the
actor is responsible for selecting actions based on the current
policy, and the critic evaluates the quality of these actions by
estimating the value function. In Dec-POMDP, the critic Vφ is
also dependent on the history of action-observation pairs and
thus it is usually modelled with a RNN as

V̂φ(si,t,h
V
i,t−1),h

V
i,t = Vφ(si,t,h

V
i,t−1) (20)

where hV
i,t are the hidden features of the critic. Given a

trajectory of length Lτ (subset of the horizon length H), L(φ)
is defined to perform regression on the rewards-to-go as

L(φ) =
1

NLτ

∑

i∈V

Lτ∑

ℓ=1

{
max

([
V̂φ(si,ℓ,h

V
i,ℓ)−Rℓ

]2
,

[
clip

(
V̂φ(si,ℓ,h

V
i,ℓ−1), V̂φold

(si,ℓ,h
V
i,ℓ−1), ϵ

)
−Rℓ

]2
)}

(21)
where the clip prevents the value function from radically
changing between iterations, and it is defined as

clip
(
A, B, ϵ

)
= min

(
max

(
A, B − ϵ

)
, B + ϵ

)
(22)

where ϵ is the clip coefficient.

The actor πθ is also trained with clipping to discard the KL

constraint in (19) by minimizing

L(θ) = − 1

NLτ

∑

i∈V

Lτ∑

ℓ=1

{
min

(
πθ(ai,ℓ|hb

i,ℓ)

πθold(ai,ℓ|hb
i,ℓ)

Âi,ℓ,

clip
( πθ(ai,ℓ|hb

i,ℓ)

πθold(ai,ℓ|hb
i,ℓ)

, 1, ϵ
)
Âi,ℓ

)
+ αS

(
πθ(·|hb

i,ℓ)
)
}

(23)

where Âi,ℓ = Rℓ−V̂φold
(si,ℓ,h

V
i,ℓ−1) is the advantage function

estimate, S(px) = Ex∼px

{
− log

(
px(x)

)}
is the entropy func-

tion which encourages the exploration by inducing stochastic
policies, and α is the temperature hyper-parameter which
balances the trade-off between exploiting the best actions and
exploring new actions. Finally, the beliefs bψ adopt a MSE
loss function to minimize J(b) in (10) as

L(ψ) =
1

NLτ

∑

i∈V

Lτ∑

ℓ=1

∥∥ŝi,t − si,t

∥∥2

2
. (24)

All the NNs are trained with maximum likelihood
estimation (MLE) criterion. However, while
bψ(si,t|oi,t, āi,t−1, h̄

b
i,t−1) directly outputs ŝi,t, πθ(ai,t|hb

i,t)
predicts the probability of communication among agents
through sigmoid activation functions, from which actions
ai,t are sampled. The full training algorithm can be
found in Algorithm 1, where we defined a transition as
τt = (st,ot,h

b
t , h̄b

t ,hV
t ,at, āt, rt, st+1,ot+1, ŝt+1). Since

our approach combines the usage of passive targets to improve
the position estimate and MAPPO MARL to perform an
efficient agent selection, we call this algorithm ICP-MAPPO.

The main characteristics of ICP-MAPPO are the following.
ICP-MAPPO is a low-bias on-policy algorithm since the data
used to train the agents are collected from the policy currently
being learned or improved. For value regression, we adopted
a centralized value function that takes as input extra global
information (i.e., the states) not present in the agent’s local
observation to accurately estimate the values state. The beliefs
are computed as in model-based value estimation (MBVE) RL
[103], [104], leveraging the learned dynamics to predict the
state estimate. This additionally reduces the variance of the
PO method without introducing additional biases by avoiding
performing rollouts [105]. Finally, as opposed to conventional
MARL algorithms, the rewards are not directly dependent on
the action, but only implicitly through the beliefs of the next
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Algorithm 1 Implicit Cooperative Positioning Multi-Agent
Proximal Policy Optimization (ICP-MAPPO)

1: Input: actor, critic and belief parameters θ = θold,
φ = φold, and ψ.

2: for each training step n = 1, 2, . . . , Nstep do
3: Initialize empty batch B = {} and trajectory τ = []
4: Initialize histories hV

i,0 and hb
i,1 for critic and beliefs

5: Initialize state estimate ŝ0

6: for t = 1, 2, . . . , H do
7: for all agents i ∈ V in parallel do
8: Sample action ai,t ∼ πθold(ai,t|hb

i,t)
9: Send hb

i,t and receive hb
j,t ∀j ∈ Ni,t

10: Get value estimate V̂φold
(si,t,h

V
i,t−1) with (20)

11: Compute āi,t and h̄b
i,t with (13) and (14)

12: Observe si,t+1,oi,t+1

13: Get state estimate ŝi,t+1 with (11)
14: end for
15: Observe rt and store τt in τ
16: end for
17: Compute advantage estimate Âi,t ∀ t and agent i on τ
18: Compute reward-to-go Rt for each ∀ t on τ
19: Split trajectory τ into chunks of length Lτ

20: for each ℓ = 0, 1, . . . , ⌊H/Lτ⌋ do
21: B = B ∪

{
τt, Ât, Rt

}ℓ+Lτ

t=ℓ

22: Adam update of ψ on L(ψ) with data
{
τt

}ℓ+Lτ

t=ℓ
23: end for
24: for each mini-batch do
25: Sample

{
τℓ

}Lτ

ℓ=1
∼ B

26: Adam update of θ on L(θ) with data
{
τℓ

}Lτ

ℓ=1

27: Adam update of φ on L(φ) with data
{
τℓ

}Lτ

ℓ=1
28: end for
29: θold ← θ, φold ← φ
30: end for

timestep. This permits to effectively decouple the evaluation
of actions based on the improvement of state predictions rather
than immediate outcomes, focusing on long-term strategic
benefits rather than short-term gains.

V. SIMULATION EXPERIMENTS

In this section, we first introduce the scenario and the train-
ing procedures, and then we describe the baseline methods,
and the main simulation results.

A. Simulation Setup

To evaluate the performances of the proposed ICP-MAPPO
algorithm, we simulate a C-ITS scenario with the CARLA
software [94] in an urban map (i.e., Town02 of CARLA)
that spans an area of 200×200 m2. Fig. 1 shows a bird-eye-
view representation of the map. CARLA takes into account
inter-vehicle dynamics, such as acceleration, braking behavior,
and collision physics, as well as communication constraints
given by the environment. Within the area, 20 CAVs move
for 1500 timesteps sampled every 0.2 s, while 72 fixed objects
(poles) are detected by the vehicles if in line-of-sight (LoS)

and within a sensing range of 70 m. The same coverage area
applies to A2A measurements. For the communications, we
only consider the direct LoS path, as if the vehicles were
equipped with LIDAR technology that could be blocked by
obstacles such as buildings or other vehicles. The absolute
driving speed adopted in the testing scenario ranges from 0
to about 60 km/h, with a mean and standard deviation speed
of 0.2 km/h and 14 km/h, respectively. We point out that the
motion models of the vehicles are not linear and that the factor
graph to solve the distributed ICP method contains cycles. For
the GNSS, A2A, and A2T observations, measurement errors
are simulated as additive independent Gaussian noises with
standard deviations of 2 m each.

For the training and testing of the ICP-MAPPO algo-
rithm, we create two different simulations each composed
of H = 1500 timesteps. Model training is performed over
Nstep = 2000 episodes (or training steps), each characterized
by a different realization of the measurements. For testing,
40 Monte Carlo (MC) evaluations are considered, unless
otherwise specified. During training, we adopt a trajectory
length Lτ = H/2 to use at most 2 mini-batches, as suggested
by [87], [106]. The entropy, reward and clipping coefficients
have been chosen to be α = 0.01, β = 0.05 and ϵ = 0.2,
respectively. Note that β = 0.05 would correspond to an
improvement step of the reward function of 5 cm in a non-
standardized state scenario. The discount factor is γ = 0.99,
while the Adam [107] learning rate is µ = 10−5 with standard
hyper-parameters.

Regarding the NN architectures, we adopt a critic network
with three layers: a fully-connected (FC) linear layer with 256
neurons, a gated recurrent unit (GRU) with hidden size of
256 and a final FC linear layer. The actor is an MLP with
two hidden linear layers of [128, 64] neurons and rectified
linear unit (ReLU) activation functions, and an output layer
with sigmoid activation function. Lastly, the belief network
employs two bidirectional LSTM layers of 256 hidden neurons
each and ReLU activation functions, followed by a Maxout
unit with 128 output features and two linear layers of [64, 32]
neurons.

B. Computational Complexity and Latency

To access the real-time processing capabilities of the pro-
posed method in fulfilling the CAVs requirements on latency,
we here investigate the computational complexities and com-
munication delays of the proposed ICP-MAPPO solution with
respect to the ICP algorithm. We specify that the number
of floating point operations (FLOPs) for Vφ, πθ and bψ
are 0.82 · 106, 0.54 · 106, and 11.3 · 106, respectively. For
comparison, the computational complexity of particle-based
ICP methods is estimated with O(Nmp · N ·K · Np), where
Nmp and Np are the number of message passing iterations
and particles, respectively. The experiments are performed on
a workstation machine with Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40 GHz, 96 GB RAM, and a Quadro RTX 6000 24
GB GPU, capable of achieving about 16.3 ·1012 floating point
operations per second (FLOPS) with just CPU performances.
This implies a maximum latency for sample-inference of
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around 1 µs, which is expected to be truthful and accurate
since the computational capabilities of CAVs are planned to
far exceed our workstation capabilities with more than 4 ·1015

FLOPS for L5 SAE level [108].
When considering the communication delays with a hid-

den LSTM size of 256 bytes for ICP-MAPPO and about
Nmp = 1000 particles (each with 2 bytes for 2D position
and 1 byte for the weight) in the ICP method, the data
transmission would require approximately 1 and 10 packets,
respectively. This estimate is based on 5G vehicle-to-vehicle
(V2V) communications with a typical packet size of 300 bytes.
Two communication scenarios are possible: direct V2V [109]
or vehicle-to-network-to-vehicle (V2N2V) [110] when under
cellular coverage. For direct V2V communication, the end-to-
end (E2E) packet latency is around 1 ms [109], resulting in 10
ms for ICP and 1 ms for ICP-MAPPO. In the V2N2V case,
assuming the distances and scenarios described in [110], the
E2E packet latency is around 4 ms, resulting in 40 ms for ICP
and 4 ms for ICP-MAPPO. We note that the ICP E2E commu-
nication delay exceeds the 5 ms latency requirements of fully
CAVs [111] in both scenarios, especially if a message passing
procedure with multiple belief exchanges is considered. On the
contrary, the ICP-MAPPO method meets the stringent latency
requirements needed for fully CAVs.

C. Baseline Methods

As benchmark algorithms, we consider the following im-
plementations:

1) KF-GNSS: Non-cooperative single-agent GNSS-based
KF only using GNSS observations and perfect knowledge of
the measurement standard deviation σ(GNSS) = 2 m. For the
motion dynamics (1), we adopt a constant velocity model with
standard deviation of the Gaussian-distributed velocity driving
process calibrated on the data and equal to 0.5 m/s2.

2) ICP: Centralized ICP method from [32] with known
A2A and A2T standard deviations, i.e., σ(A2A) = σ(A2T) =
2 m, and same motion model as for the KF-GNSS. Note
that the use of the exact measurement statistics in generation
and tracking allows to obtain the optimal performance (i.e.
with no errors due to mis-modeling). Here the network of
agents is fully-connected, i.e., all the agents share the same
measurements.

3) Ego ICP-MAPPO: Proposed ICP-MAPPO method, with
no-cooperation, i.e., only comprising the belief LSTM and
imposing no connectivity with other agents, i.e., āi,j,t =
−1 ∀t ∈ {0, . . . , H − 1}, i ∈ V, j ∈ Ni,t. In this way, each
agent has to rely just on its measurements without performing
aggregation of the neighbors’ hidden features.

D. Results

1) Training performances: In the first assessment, we aim
at verifying the convergence of the proposed ICP-MAPPO
algorithm during the training episodes. In Fig. 5, 6 and 7,
we report the mean belief LSTM loss, reward, and state
value function, respectively, along with the 5-95 percentile
as error bounds. The metrics are computed among agents
and trajectory over the whole episode. From the figures, we
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Fig. 6. Achieved reward varying the number of training episodes.

notice two distinct phases of the training: before and after
reward convergence. In the first phase, i.e., before episode
250, the exploration is encouraged, leading to a much higher
variability of the reward and a very rapid decrease of the
LSTM loss function. After passing into the second phase, the
positioning improvement becomes smaller, with a consequent
convergence of the reward to the value of 2. Notably, also
the mean value function converges after about 250 episodes,
but with a high variance between agents and trajectories. This
may be indicative of a rich and complex environment where
the optimal policy may not be static, but rather dynamic
and contingent on the interactions between agents and the
environment. Indeed, the complexity of the state, e.g., each
agent has a different trajectory in the space, can lead to a
wide range of value function estimates as different states are
visited with varying frequencies.

2) Testing cooperative positioning: This experiment has the
objective of comparing the positioning capabilities of ICP-
MAPPO with respect to the baselines in an unseen testing
trajectory. To this aim, Fig. 8 shows the root mean square
error (RMSE) on the vehicle position at each timestep of
the trajectory (Fig. 8a) and the corresponding cumulative
density function (CDF) of the absolute error (Fig. 8b). The
RMSE is computed among the agents at the single timestep,
while the mean and error bounds are computed within the
MC evaluations. From the results, we observe that the Ego
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ICP-MAPPO, which only relies on GNSS measurements,
converges to the KF-GNSS method, indicating a correct usage
of the observations to estimate the position. Passing to the
cooperative methods, we notice a higher speed of convergence
of ICP-MAPPO with respect to the conventional ICP. This
is mainly due to the learned vehicles’ dynamics and to
the effective combination of neighbors’ observations. As a
consequence, the ICP-MAPPO algorithm outperforms the ICP
method in terms of absolute error by 21%, passing from a
median of 42 cm to 33 cm.

3) Generalization capabilities: This experiment aims at as-
sessing the generalization capabilities of the proposed method
in unseen scenarios. To evaluate the environmental dependence
of our model, we tested the pre-trained ICP-MAPPO on a
different CARLA map, specifically Town10. In Fig. 9, we
plotted the position RMSE on testing trajectories in both
Town02 (used for training) and Town10 (unseen environment),
varying the number of passive objects in the respective map.
We shall notice that the numbers of poles in Town10 and
Town02 are 146 and 72, respectively. Since ICP-MAPPO was
trained with a maximum input size of 72 measurements, we
adjusted the number of targets up to 72 for this experiment.

The results in Fig. 9 confirm that, even in the unseen
scenario, a higher number of vehicles increases the positioning
accuracy thanks to the cooperation among vehicles. Com-
paring the results on Town02 and Town10, we note that in
the limit-case of no measurements shared among agents, the
performances in the two scenarios coincide. On the contrary,
when the number of features increases, the performances on
the unseen scenario are slightly lower (i.e., about 10 cm)
despite the completely new environment.

4) Communication efficiency: In this last assessment, we
test the effectiveness of the policy choices in terms of coopera-
tion power and communication efficiency. In Fig. 10 we report
the position RMSE at convergence (Fig. 10a) and the mean
number of selected agents from the policy (Fig. 10b) varying
the maximum degree of connectivity allowed in the network.
In Fig. 10a we observe an intuitive inverse relation between
the maximum cooperative agents and the RMSE, with a rapid
decrease under 1 m of RMSE with just 2 agents. Notably, after
8 cooperative agents, the improvement in RMSE is negligible,
with convergence to about 40 cm. To study this behaviour, in
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Fig. 8. Testing performances on the cooperative scenario. (a) RMSE of the
position over time for the single-agent KF-GNSS, ICP, proposed single agent
and cooperative ICP-MAPPO. (b) CDF of the absolute error.
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Fig. 9. RMSE on the position achieved by ICP-MAPPO varying the number
of targets (i.e., poles) in two distinct environments.

Fig. 10b we notice that the policy tends to select no more
than 9 agents for cooperation. This likely occurs because the
marginal benefits of additional cooperation diminish beyond
this point, leading agents to prefer collaboration with only
their closest neighbors. Indeed, incorporating data from dis-
tant agents that do not observe common targets results in
only slight enhancements in positional accuracy. Lastly, we
highlight that the ICP-MAPPO has higher performance than
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the ICP method for the same number of cooperative agents in
the network.

To evaluate the trade-off between positioning accuracy and
communication overhead, in Fig. 11, we plot the mean number
of A2A links, considering varying numbers of cooperative
vehicles in {2, 6, 10, 15, 20}. We observe that with a smaller
number of cooperative agents, such as 2, the ICP-MAPPO
tends to employ all available agents, leveraging neighbors’
measurements to rapidly reduce GNSS uncertainty. Con-
versely, with a higher number of agents, particularly beyond
10, the benefits of additional cooperation decrease (as shown
in Fig. 10a). This is because only the closest neighbors with
a significant number of shared targets substantially enhance
positioning accuracy. Notably, with 10 and 20 agents, ICP-
MAPPO reduces the number of links by 30% and 60%,
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Fig. 11. Mean number of A2A connections in the network graph, for the ICP
and the proposed ICP-MAPPO algorithms, and different maximum number
of cooperative agents.

respectively, compared to ICP.

VI. CONCLUSION

In this paper, we addressed the problem of CP in a dis-
tributed network of agents that exploit passive detected targets
to improve the positioning accuracy according to the ICP
framework. We provided a generalization of the Bayesian ICP
solution by means of MARL, which enables the dynamic
optimization of the A2A links used for cooperation accounting
for partial observability of the state. We presented a novel
ICP-MAPPO algorithm where the agents actively select the
neighbors to communicate with by following their optimized
policy. This allows to minimize the communication overhead
for cooperation, while improving the positioning accuracy
of ego-agent systems. The proposed solution is proven to
outperform single and multi-agent conventional approaches
thanks to DL-based states’ belief and policy models.

Realistic simulations of a C-ITS scenario created with
CARLA simulator demonstrate the superior performances of
ICP-MAPPO with state-of-the-art ICP methods, both in terms
of positioning accuracy and efficiency of communications.
The cooperation is indeed intelligently exploited to enhance
the performances and, at the same time the communication
efficiency, by selecting ad-hoc neighbors that are relevant for
the task. The benefits of the approach look promising for
applications where groups of agents have a common inference
objective and predictions or decisions need to be taken based
on incomplete or uncertain data.

As future work, we envision the extension of the proposed
method to decentralized frameworks [112], incorporating also
data association of the targets to the measurements. Addition-
ally, performances could be enhanced by exploiting a higher
dimension of latent features within object detectors, instead
of filtering specific objects such as poles. This approach
would allow vehicles to exchange much more meaningful
information in a compressed manner. Furthermore, including
motion planning [113] could enable the system to not only
estimate but also modify the vehicles’ states according to their
destinations. Finally, introducing safe RL [114] by adding
safety constraints related to communication resources, such
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as maximum available bandwidth, would ensure that the
policies learned by the agents remain efficient under real-world
communication constraints.

APPENDIX A
PROOF OF (18)

To prove (18), we start by writing the gradient of the RL
objective function in (17) as

∇θ J(πθ) = ∇θ E τ∼p(τ |πθ)

{
R̃(τ)

}
= ∇θ

∑

τ

p(τ |πθ) R̃(τ )

=
∑

τ

∇θ p(τ |πθ) R̃(τ ). (A1)

Now, we can rewrite the gradient of the trajectory PDF
∇θ p(τ |πθ) using the log-derivative trick as

∇θ p(τ |πθ) = p(τ |πθ)∇θ log
(
p(τ |πθ)

)
. (A2)

Given that the gradient of the log-trajectory PDF
∇θ log

(
p(τ |πθ)

)
is

∇θ log
(
p(τ |πθ)

)
= ∇θ log

(
T0

H−1∏

t=0

T (st+1|st,at) πθ(at|st)
)

=

H−1∑

t=0

∇θ log
(
πθ(at|st)

)
(A3)

we can rewrite (A1) as

∇θ J(πθ) =
∑

τ

p(τ |πθ)∇θ log
(
p(τ |πθ)

)
R̃(τ )

= E τ∼p(τ |πθ)

{
∇θ log

(
p(τ |πθ)

)
R̃(τ)

}

= E(st,at)∼p(st,at|πθ)

{ H−1∑

t=0

∇θ log
(
πθ(at|st)

)

×
H−1∑

t=0

γt R
(
st, at

)}
.

(A4)
Since the action at at time t only influences the future rewards
and not the past ones, (A4) can be equivalently rewritten as

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{ H−1∑

t=0

∇θ log
(
πθ(at|st)

)
Rt

}

(A5)
where we used the reward-to-go at time t
Rt =

∑H−1
t′=t γt′−t R

(
st′ , at′

)
, as opposed to R0.

Since it can be proven that for any function
of the state B(st) called baseline, we have that
Eat∼πθ(at|st)

{
∇θ log

(
πθ(at|st) B(st)

)}
= 0, then we

can reduce the variance of the PO algorithm, while remaining
unbiased, by subtracting the baseline from the reward-to-go
as

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{ H−1∑

t=0

[
∇θ log

(
πθ(at|st)

)

×
(
Rt −B(st)

)]}
.

(A6)
Finally, Rt and B(st) are usually substituted with their esti-
mates Qπ(st, at) and V π(st), respectively, leading to the def-

inition of the advantage function At = Qπ(st, at)− V π(st).
Recently, more advanced versions of the advantage function,
as the generalized advantage estimator (GAE) function AGAE

t

have been proposed in the literature [100] to regulate the
bias-variance trade-off, increase stability, efficiency, and obtain
faster convergence. We want to point out that usage of the
baseline and/or the estimate of Rt are not necessary, and thus
any function Ft ∈

{
Rt, Q

π(st, at),Rt − V π(st), At, A
GAE
t

}

is a valid choice.
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Efficient Distribution Sampling for
NLoS Identification

In this chapter, we present a work on efficient distribution sampling for NLoS identifica-
tion in next-generation cellular networks, modelling the problem as an anomaly detection
task. In particular, we address the limitations of current semi-supervised learning meth-
ods in providing a precise and compact latent feature representation that does not require
two-stage training and holding the entire training dataset for prediction. To this aim,
we propose a DAKDM composed of an AE, a KDE and a likelihood network. The AE
permits to have a compact representation of the input, i.e., ADCPM, by minimizing the
reconstruction error. On the contrary, the likelihood network is trained to mimic the KDE
output adopting the VI paradigm. At inference phase, the decoder and KDE parts are
discarded, and only the encoder and likelihood networks are adopted for anomaly score
estimation. The BSs are trained according to the C-ML paradigm by only employing
LoS data, i.e., normal data, whereas they are tested to distinguish NLoS samples, i.e.,
anomalous data, from the learned LoS distribution. Comparisons with statistical and DL
methods for anomaly detection show that the proposed DAKDM is able to have similar
performances to best state-of-the-art methods while being significantly more efficient in
terms of storage requirements and inference time.
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On the Latent Space of mmWave MIMO Channels
for NLOS Identification in 5G-Advanced Systems
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Abstract— In mission-critical verticals such as automated
driving, 5G-advanced networks must provide centimeter-level
dynamic positioning along with ultra-reliable low-latency com-
munication services. Massive Multiple-Input Multiple-Output
(mMIMO) and millimeter waves (mmWave) are the key enablers,
allowing high accuracy angle and delay estimation. Still, extract-
ing such information from highly-dimensional Channel Impulse
Responses (CIRs) results in a complex task, due to channel spar-
sity and intermittent blockage. In this paper we focus on non-line-
of-sight (NLOS) identification from CIR data, proposing a Deep
Autoencoding Kernel Density Model (DAKDM) to characterize
the statistics of the channel latent features. We formulate the
problem as a semi-supervised anomaly detection task in which
only LOS samples, i.e., normal data, are adopted for training.
DAKDM is a single-stage training model that takes as input the
full CIR thanks to an AutoEncoder (AE) structure. The proposed
method is able to learn the latent distribution by means of a
Kernel Density Estimator (KDE) in combination with a deep
learning likelihood network. We validate the proposed solution in
a 5G Urban micro (UMi) vehicular scenario. Results show that
the proposed model can significantly outperform conventional
algorithms and obtain similar performances to variational Bayes
algorithms at one tenth of the inference time.

Index Terms— Deep autoencoding kernel density model,
anomaly detection, CIR, 5G, deep learning, NLOS identification.

I. INTRODUCTION

THE newest release of the 5th generation (5G) of cel-
lular communication systems, namely the 3rd genera-

tion partnership project (3GPP) Release 16, also known as
new radio (NR), introduces for the first time high-precision
positioning functionalities into cellular networks. location ser-
vices (LCS) are extended from regulatory services to roam-
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ing and commercial capabilities [1], [2], [3], [4]. Higher
frequencies, bandwidth improvements and massive-multiple-
input multiple-output (MIMO) technologies are the key fea-
ture enablers for radio access technology (RAT)-dependent
dynamic positioning [2], [3], [4], [5] and location awareness
of connected nodes [6], [7], [8], [9], [10], [11]. The major
fields of application can be found in target tracking [12],
[13], [14], internet-of-things (IoT) [15], [16], [17], crowd
sensing [18], [19], smart environments [20] and industrial
automation [21]. Strict requirements are foreseen for the most
critical services such as automated driving [22], [23]. These
include a lateral and longitudinal positioning error of 10 and
50 cm [24], respectively, and a latency down to 5 ms for
fully autonomous driving vehicles [25]. Next 5G releases,
also known as 5G-Advanced and beyond, will have to meet
such challenging localization requirements while coping with
complex propagation conditions, due to the extreme path-loss
and frequent blockage conditions experienced by millimeter
waves (mmWave).

These problems have been widely studied in the field of
localization and navigation focusing on fundamental perfor-
mance limits [26], [27], [28], [29], [30], [31], algorithm
design [32], [33], [34], [35], [36], [37], [38], network opera-
tion [39], [40], [41], [42], and network experimentation [43],
[44], [45], [46], [47], [48]. It is clear that legacy solutions
for positioning, based on conventional approaches for multi-
lateration/angulation, will struggle to deal with rapidly fading
channels and intermittent blockage. Geometrical approaches
rely in fact on line-of-sight (LOS) condition for estimating
directions and ranges of the positioning reference signals.
Real-time detection and prediction of non-LOS (NLOS) links
is mandatory to mitigate the false localization due to biased
range/angle estimates. Since the environment significantly
impacts on the propagation, data-driven techniques have so far
produced very encouraging outcomes in NLOS detection [48],
[49]. Therefore, machine learning (ML) is expected to play a
crucial role in future generation networks [50], [51] and stan-
dard compliant solutions are foreseen already from Release
17-18 [52].

Solutions for blockage detection should exploit the whole
power-delay-angle profile of the channel impulse response
(CIR) as this embeds a wide range of geographical data and
propagation characteristics [53]. In 5G industrial use-cases,
e.g., automated driving, historical CIR data are largely avail-
able in roadside units that receive continuous information from
geolocalized vehicles [54], [55], [56], [57]. ML algorithms
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Fig. 1. Sparse channel representation in azimuth ϕ, elevation θ and delay τ
domain.

could easily exploit these data for automatic NLOS detection.
However, since such signals are highly dependent on the
environment, ML approaches for detecting NLOS using CIRs
frequently fail to generalize to varied contexts [58]. Moreover,
massive MIMO and very high frequencies of advanced-5G
networks will produce high dimensional channel responses
which may be complex to handle. An example of channel
power-delay-angle-profile is shown in Fig. 1, for a 5G urban
scenario with carrier frequency 30 GHz, bandwidth 400 MHz
and uniform planar antenna array receiver of 64 elements. The
sparse power delay-angle profile of the channel is a signature
of the user location and should be exploited to infer the
visibility conditions of the base station.

In this paper, we propose an innovative strategy to char-
acterize the sparsity of the mmWave MIMO channel and
approximate whatever high-dimensional distribution in a fast
and compact way. To demonstrate the efficacy of the method,
we address the problem of NLOS identification, exclusively
employing LOS CIRs for training. This is done because LOS
CIRs are easier to extract in training procedures and present
more peculiar distributions, i.e., usually the direct path is the
dominant factor in a Rician fading channel. In addition, this
facilitates the deployment and results in higher generalization
compared to other systems that require both classes for training
(i.e., LOS and NLOS). Therefore, we treat the problem as an
anomaly detection case in which LOS samples are considered
as normal samples, while NLOS samples are anomalous.

II. RELATED WORKS

In this section, we first review the literature starting from
early works on ultra wide-band (UWB) systems (Sec. II-A)
and then we extend the analysis to ML-based algorithms
(Sec. II-B). Next, we review the state of the art on anomaly
detection focusing on neural network (NN) approaches
(Sec. II-C) and we discuss the original contributions provided
in the paper (Sec. II-D).

A. NLOS Identification

Existing techniques for NLOS identification/detection prob-
lem can be mainly divided into three major categories: based
on range estimates, based on position estimates and based on
channel statistics. The first group of methods, i.e., based
on range estimates, measures the running variance of the
ranges and applies a threshold using pre-computed variance
statistics [59]. The techniques based on position estimates are
mainly map-based, i.e., they observe the user equipment (UE)
position in relation to the geometry of the environment [60],
[61]. These first two categories are either too oversimplified
or require perfect knowledge of the UE’s position and of the
map geometry.

The third class relies on channel statistics, such as ampli-
tude, mean and root-mean-square delay. In case these statistics
are known at-priori, a joint-likelihood ratio test can be adopted
for hypothesis selection [62], [63] or as soft information in
weighted least squares (WLS) algorithms. The limitations of
this last class of existing techniques include experiencing
delays while gathering channel statistics to create a database
and determining the complex combined probability distribu-
tions of necessary features for statistical methods. ML-based
approaches overcome these drawbacks by avoiding statistical
modeling of the input features.

B. ML for NLOS Identification

ML approaches to NLOS identification can be divided into:
supervised, unsupervised and semi-supervised learning. First
works (i.e., supervised learning) use hand-crafted channel
state information (CSI) features such as energy, maximum
rise time, kurtosis, root-mean-square-delay spread, maximum
amplitude, time of flight (ToF), Ricean-K-factor and mean
excess delay [48], [64], [65], [66]. These deterministic features
have a solid theoretical basis and capture the differences
between LOS and NLOS conditions in terms of power and
delay attributes, as well as the strength of the dominant signal
component relative to the multipath components. The most
popular adopted ML models are support vector machines
(SVMs), relevance vector machines (RVMs), random forests
(RFs) and Gaussian processes (GP). These methods can also
be used to directly mitigate the range bias by applying a
regression problem to the ranging-error estimates [49], [67].

Despite achieving good results, these methods highly
depend on the pre-selected features which limit their potential.
On the other hand, deep learning (DL) approaches can directly
learn the most suitable combination of features (typically non-
linear) using as input the full CIR and producing as output the
desired classification. First works in this direction can be found
in [68], [69], [70] using convolutional neural networks (CNN)
to perform feature extractions in grid-like data where local
patterns and structures are critical. Some recent studies [71],
[72] directly exploit the automatic feature extraction of the
CNN in order to locate a target by performing a fingerprint
training. A main limit is the need of extensive measurement
campaigns and time-consuming labeling of data. Moreover,
supervised learning approaches require updating the training
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database when conditions are changed and need representative
samples of all the possible NLOS anomalies.

A solution could be permitting not to have labels at all and
manage the problem as an unsupervised one. Authors in [73]
fit a Gaussian mixture model (GMM) with two components
(one for LOS and one for NLOS) using some key hand-
crafted features of the channel and output the classification
according to the magnitude of the membership weights. While
unsupervised techniques are very promising, unfortunately
they do not achieve very high performances, due to lack of
knowledge or lack of structured data.

The third class of semi-supervised approaches has the
advantage of not needing examples of all the possible anoma-
lies as supervised learning. Moreover, powerful DL semi-
supervised methods focus on learning one single distribution
which, in many cases, is easier than a separating boundary
between two distributions [74]. Works that adopt this strategy
can be found in [58], [75] which adopt the Pearson correlation
coefficient and one-class SVM to perform NLOS classifica-
tion, respectively. A very recent work [76] employs variational
autoencoder (VAE) to perform feature extraction and imposes
a Gaussian distribution to the latent features in order to ease
learning of distribution of normal samples. The score adopted
to define the probability of NLOS is then used to estimate
the bias and variance of time-based measurements. Although
the idea of using an autoencoder (AE) to have a compact
representation of the channel can give very good results, the
usage of sampling-based methods to perform the prediction
has the main drawback of not being suitable for real-time
applications.

C. Neural Networks for Anomaly Detection

Anomaly detection is frequently employed in problems
where we have a large amount of data from normal circum-
stances but little data from abnormal ones. Here, on the other
hand, we consider the setting of semi-supervised learning in
which normal training data only are provided. In this case,
the problem turns out to be locating those samples that do
not conform to the normal ones or a model explaining normal
ones. Thus, the objective is to learn in a finer way as possible
the distribution related to the normal samples.

To this aim, many works focus on end-to-end models to
directly produce the classification using one-class neural net-
works (OC-NN) [77]. On the other hand, generative models are
increasing in popularity with generative adversarial network
(GAN) and VAE [78]. However, GANs are problematic to
control in the training phase [79] and VAEs have the downside
of requiring sampling, which is unfeasible under certain use
cases, and furthermore experiments have shown that they tend
to perform worse than AE [80], [81].

Reconstruction methods, as AE, are the most widely used
DL techniques for anomaly detection in images [82]. Usually,
they are used in combination with density-based methods,
as kernel density estimation (KDE) [83], for score estimation
by first performing dimensionality reduction, and then apply-
ing density estimation to the latent low-dimensional space.
However, these two-steps methods restrict the modification to
the dimensionality reduction since fine-tuning is difficult in

well-trained AE. To solve this problem, authors in [84] propose
a deep autoencoding Gaussian mixture model (DAGMM) to
mutually learn the latent feature representations and their
density under the GMM framework by mixture membership
estimation. Even though their approach is direct and does not
require two step-training, GMM may not be able to fully
represent the latent distribution of normal samples and are
subject to singularity problems. On the other hand, KDE are
perfect to represent complex distributions, but they are very
slow in evaluation and require storing the whole dataset for
inference.

D. Contributions

In this paper, we address the problem of NLOS identifi-
cation in 5G-advanced cellular systems using an innovative
approach that allows to overcome the aforementioned limita-
tions. The main contributions are the following:

• We propose a feature extraction method that exploits the
angle-delay channel power matrix (ADCPM) as input
data and allows to characterize the distributions of the
latent features of the sparse space-time channel in mas-
sive MIMO cellular systems using orthogonal frequency
division multiplexing (OFDM).

• We design NLOS identification as a semi-supervised
anomaly-detection problem by exploiting a deep autoen-
coding kernel density model (DAKDM). The DL model
allows to identify the few key parameters that describe
the sparse space-time channel response and to learn
the distributions of such latent features from training
data. The proposed approach is able to jointly learn the
sparse channel representation and approximate the KDE
likelihood in a single training stage without storing the
dataset.

• We simulate a realistic 5G-advanced MIMO-OFDM
vehicular scenario, according to the standard specifica-
tions [85], using a Matlab ray-tracing software [86]. The
scenario is composed of multiple vehicular UEs created
with simulation of urban mobility (SUMO) software [87].

The paper is organized as follows: Sec. III introduces the
channel model for a multi-user MIMO-OFDM system and
its extracted fingerprinting. Sec. IV provides the context of
anomaly detection applied to the NLOS identification and
defines the proposed DAKDM solution. Sec. V is devoted to
the description of the simulated 5G scenario and to the com-
parison with state-of-the-art anomaly detection DL methods.
Finally, Sec. VI draws the conclusion.

E. Notation

Random variables are displayed in sans serif, upright fonts;
their realizations in serif, italic fonts. Vectors and matri-
ces are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its real-
ization are denoted by x and x; a random vector and its
realization are denoted by x and x; a random matrix and its
realization are denoted by X and X , respectively. Random
sets and their realizations are denoted by up-right sans serif
and calligraphic font, respectively. For example, a random
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Fig. 2. Uniform planar array with M and N antennas in x and z directions,
respectively. The direction of arrival (DoA) is highlighted and decomposed
into azimuth 0 ≤ φk,p < π and elevation 0 ≤ θk,p < π.

set and its realization are denoted by X and X , respectively.
The function px(x), and simply p(x) when there is no ambi-
guity, denotes the probability density function (PDF) of x.
j =

√
−1 denotes the imaginary unit. The notation XT, X∗

and XH indicate the matrix transposition, conjugation and
conjugate transposition. The Kronecker and the Hadamard
product between two matrices are denoted with the symbols
⊗ and ⊙, respectively. With the notation x ∼ CN (µ, σ2) we
indicate a complex Gaussian random variable x with mean µ
and standard deviation σ. We use E{·} and V{·} to denote the
expectation and the variance of random variable, respectively.
R and C stand for the set of real and complex numbers,
respectively. Re(x) and Im(x) are the real and complex part of
the complex number x, respectively. ⌊x⌋ indicates the largest
integer not greater than x, while δ(·) and δ[·] are the Dirac
delta and Kronecker functions, respectively.

III. SYSTEM MODEL

A. Channel Model

We consider a multi-user mmWave MIMO-OFDM system
in which K UEs transmit in uplink direction over a bandwidth
B at carrier wavelength λc. The base station (BS)’s cell panel
is equipped with an uniform planar array (UPA) with N ×M
isotropic antennas. The antenna spacings are dh and dv, over
the horizontal and vertical dimension, respectively. We assume
that the UE transmits using only one logical port and a number
of physical antennas unknown at the BS. Between the UE
k = 1, . . . ,K and the BS, we consider a multipath channel
with Nk paths with ToF τk,p for path p = 1, . . . , Nk. The
DoAs from the k-th UE and of the p-th path are divided into
azimuth 0 ≤ φk,p < π and elevation 0 ≤ θk,p < π. A picture
of the panel array can be found in Fig. 2. We restrict the
azimuth up to π since we consider an UPA antenna. For tri-
sectorial BSs the angular coverage is reduced to 2π/3.

The OFDM modulation is performed over Nc sub-carriers,
sampling interval Ts and symbol duration Tc = NcTs. Con-
sidering a baseband representation of the signal, we define the
frequency at the ℓ-th sub-carrier as fℓ = ℓ

Tc
, ℓ = 0, . . . , Nc−1.

The cyclic-prefix duration is Tg = NgTs and it is assumed

to be larger than the maximum channel delay for all UEs
τMAX = max

k,p
τk,p. Consequently, we define with rk,p = ⌊ τk,p

Ts
⌋

the temporally resolvable propagation delay of the p-th path
with respect to the k-th UE. Thus, the baseband CIR of user
k is modelled as [88]:

hk(τ) =
Nk∑

p=1

ak,p βk,p e(θk,p,φk,p)e
−j2π dk,p

λc δ(τ − τk,p), (1)

where the p-th path is characterized by a complex path gain

αk,p = ak,pe
−j2π dk,p

λc βk,p with βk,p = ej2πνk,pt due to the
Doppler frequency shift, a traveled distance dk,p = cτk,p,
a pulse waveform approximated with a Dirac delta function
δ(τ − τk,p) and an array response vector e(θk,p,φk,p) ∈
CMN . For p > 1, the p-th path is αk,p = ak,pe

jψk,p ,
with ψk,p = 2πνk,pt− 2π

dk,p

λc
and αk,p ∼ CN (0, σ2

k,p). The
first path p = 0 is αk,0 ∼ CN (s0ak,0e

jψk,0 , σ2
k,0) where

it is s0 = 1 for LOS (i.e., with a deterministic direct
path contribution and Rician fading) and s0 = 0 for NLOS
(i.e., Rayleigh fading). Additionally, we consider the Doppler-
related rotation to be almost constant over time interval τMAX

and that the complex amplitudes αk,p associated to different
paths as uncorrelated, according to the wide-sense stationary
uncorrelated scattering model. At the BS, the array response
vector can be decomposed into [89]:

e(θk,p,φk,p) = ev(θk,p)⊗ eh(θk,p,φk,p), (2)

where the M × 1 response vector to the elevation angle is:

ev(θk,p) =
[
e−j2π(m−1) dv

λc
cos(θk,p)

]M
m=1

(3)

and the N × 1 response vector to the azimuth angle is:

eh(θk,p,φk,p) =
[
e−j2π(n−1)

dh
λc

sin(θk,p)cos(φk,p)
]N
n=1

. (4)

Adopting an OFDM modulation with sampling at t = nTs,
the channel frequency response (CFR) at the ℓ-th sub-carrier
can be written as the discrete Fourier transform (DFT) of the
CIR of the different paths [90], [91]:

Hk,ℓ ≈
Ng−1∑

n=0

Nk∑

p=1

αk,p e(θk,p,φk,p) δ[n− rk,p] e
−j2πτk,pfℓ

=

Nk∑

p=1

αk,p e(θk,p,φk,p) e
−j2π ℓrk,p

Nc , (5)

where the approximation holds for ToFs multiple of the
sampling interval Ts or equivalently for Ng →∞. Finally,
the space-frequency channel response matrix (SFCRM) Hk ∈
CMN×Nc of the k-th UE is obtained as:

Hk = [Hk,0 Hk,1 . . . Hk,Nc−1], (6)

which will be used in the next section to extract the channel
fingerprints.
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B. Channel Fingerprints

To detect the propagation conditions that generated the
response (5), classifying them in LOS or NLOS, we propose
to analyze the CFR in the angle-delay domain, which eases
the recognition of the clustered multipath components associ-
ated to the direct (LOS) or secondary (NLOS) macro-paths.
We thereby convert the SFCRM (6) into the domain of the
angle of arrival (AoA) and the ToF, by introducing the angle-
delay channel response matrix (ADCRM). We define with
VM ∈ CM×M and VN ∈ CN×N the phase-shifted DFT matri-

ces [92] where [VM ]u,v = 1√
M
e−j2π

u(v−M
2

)

M and [VN ]u,v =

1√
N
e−j2π

u(v−N
2

)

N . Then, we denote by F ∈ CNc×Ng the
matrix formed by the first Ng columns of Nc dimensional
unitary DFT matrix where [F ]u,v = 1√

Nc
e−j2π

uv
Nc . ADCRM

is computed as [93]:

Gk =
1√

MNNc

(V H
M ⊗ V H

N )HkF
∗ ∈ CMN×Ng , (7)

where (V H
M ⊗V H

N ) and F ∗ project the SFCRM into the angle
and delay domain, respectively.

For NLOS identification, we propose to use the ADCRM
to compute the average power of the channel components that
are collected into the ADCPM defined as:

Pk = E{Gk ⊙ G∗
k} ∈ CMN×Ng , (8)

where [Pk]i,r = E
{
|[Gk]i,r|2

}
. We recall here that the

ADCPM holds some important asymptotic properties, as for
N , M and Ng → ∞, it tends to be a sparse matrix with
elements [Pk]i,r matching the i-th AoA and the r-th ToF [93]:

lim
M,N,Ng→∞

[Pk]i,r =
Nk∑

p=1

σ2
k,pδ[i−mk,pN − nk,p]δ[r − rk,p],

(9)

where mk,pN + nk,p denotes the index of the i-th AoA and
rk,p the index of the r-th ToF. Note that the angle and delay
indexes mk,pN + nk,p and rk,p, are two distinct and discrete
quantities which relates to the physical AoA and ToF in the
following way. The ToF can be approximated as τk,p = rk,pTs,
while the azimuth φk,p and elevation θk,p can be written as
φk,p = arccos (

mk,p−M
2

M
λc

dh
) and θk,p = arccos (

nk,p−N
2

N
λc

dv
),

respectively. Consequently, working in the transformed angle-
delay domain allows the DL model to learn the location-
dependent features and, therefore, the statistics of LOS data
to be used for blockage prediction.

Regarding the complexity overhead due to the ADCPM
computation, we observe that Pk is obtained from the chan-
nel matrix Hk which is always estimated for communica-
tions purposes. Therefore the only overhead is the compu-
tation of (7), which can be efficiently performed using the
2D-Inverse Fast FT (IFFT), with an overall complexity of
O(MNNg · log(MNNg)).

IV. BLOCKAGE DETECTION METHODOLOGY

In this section, we first introduce the problem formulation
of the semi-supervised setting which serves for the proposed

Fig. 3. Example of a sparse ADCPM with M = N = 8 antennas at the
BS and Ng = 352 cyclic prefix duration in terms of sampling intervals Ts,
simulated in an urban road environment with ray-tracing software.

DL model’s foundation. Then, we describe the network input,
i.e., the ADCPM fingerprint, followed by the definition of the
DAKDM. Finally, we define the loss function used to train the
model.

A. Problem Formulation

We consider a semi-supervised setting in which we are
given a training dataset S train comprising only normal data,
i.e., Xi sampled from pX, and a smaller testing data S test

comprising normal (label yi = 0) and anomalous data (label
yi = 1). Here, we refer to LOS samples as normal, while
we consider NLOS samples as anomalous. Nevertheless, the
choice of normal/anomalous condition is arbitrary and could
be customized to the specific scenario, as the proposed model
would still be valid in both cases, i.e., LOS or NLOS samples
as normal data. Usually, the high-dimensional distribution
of normal samples pX is complex and unknown. Thus, the
objective is to first elaborate S train such that we can learn
its manifold distribution and, subsequently, during inference
time, identify the anomalous samples in S test as outliers. The
mapping of the high-dimensional data is carried out using a
DL model f(·) that learns the normal data distribution while
also attempting to reduce an anomaly score A(Xi) given as
output. The higher the anomaly score of A(Xi) for a test
sample Xi, the higher probability that Xi is anomalous. For
evaluation, a threshold (η) criterion is applied, i.e., A(Xi) > η
denotes an anomaly, based on a predefined false positive rate
(FPR).

B. DL Input

We employ (9) as input to the neural network for NLOS
identification, as this matrix represents the clustered multipath
structure of the channel and embeds the information on
LOS/NLOS propagation conditions that we are interested to
extract. Moreover, the sparsity of the matrix helps the CNN
in features extraction since the first layers of CNN are usually
sparse and they gather the more discriminant features [94].
In Fig. 3 we can see the ADCPM Pk composed by MN angle
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Fig. 4. Structure of the proposed deep autoencoding kernel density model
(DAKDM) composed by an autoencoder (AE), a kernel density estimation
(KDE) and a likelihood network.

directions and Ng delay samples. The sparsity of the matrix
is well-visible even without a huge number of antennas or
sample’s resolution. From now on, for simplicity of notation,
we drop the index k related to user k and we denote the i-th
input sample as Xi = Pi.

C. Deep Autoencoding Kernel Density Model

The proposed DAKDM system for NLOS identification
involves three main elements: an AE, a KDE model and a
likelihood network. The model can be seen in Fig. 4. The
AE comprises an encoder E(·), that elaborates the i-th input
Xi ∈ RMN×Ng into a latent representation zi ∈ Rm, and
a decoder D(·), that carries out an inverse transformation to
return to the original high-dimensional distribution, obtaining
X̂i. The latent distribution pz may have any form, i.e., it is not
constrained to belong to any specific PDF family. This makes
the proposed approach general enough to be applied to any
channel environment.

The distribution pz is automatically learned by the KDE
block of the system (see Fig. 4). The KDE is a non-parametric
method to estimate any distribution directly from a set of
samples drawn from it. Given a set of samples {zj}Ns

j=1 from
pz, we define the KDE K(·) applied to sample zi as [95]:

K(zi|{zj}Ns
j=1) =

1

Ns

Ns∑

j=1

kh(zi − zj), (10)

where kh : Rm → R is a kernel function with bandwidth h
which regulates the balance between the estimator’s variance
and bias. The kernel employed in this paper is the widely
known Gaussian kernel:

kh(x) = e−
|x|2
2h2 . (11)

The output of a KDE, trained only with normal latent samples
{zj}Ns

j=1, can be seen as the likelihood of the test sample to
belong to the normal distribution. Thus, the derived anomaly
score can be obtained as AK(zi) = −log(K(zi|{zj}Ns

j=1)).
However, the downsides of KDE lie in the fact that it requires

Algorithm 1 Mini-Batch Training Procedure
1: procedure TRAINING(batch size Ns) ▷ Batch number j
2: for i = 1, 2, . . . , Ns do
3: Encode incoming signal Xi: zi = E(Xi).
4: Compute anomaly score: AL(zi) = −log(L(zi)).
5: Compute KDE prediction:

AK(zi) = −log(K(zji |{zj−1
l }Ns

l=1)).
6: end for
7: Compute loss function Ljtot.
8: Perform backward-pass.
9: end procedure

storing all the training dataset to estimate the density function
at inference time.

The idea to solve this issue is to first reduce the number
of samples Ns used to estimate the distribution, and then
approximate the output of the KDE with a NN that is much
faster in the prediction. We call the NN to estimate the output
of the KDE as likelihood network and denote it with L(·).
The logical steps for the training procedure with a batch of
Ns samples are described in Algorithm 1. First, we encode the
input with the encoder. Then, we extract the anomaly score
as A(Xi) ≜ AL(zi) = −log(L(zi)) and we compute the
KDE prediction AK(zi). Finally, we compute the loss function
which is described in Sec. IV-D and perform the backward
pass. The key aspect here is that the KDE output is computed
using the previous mini-batch, i.e., K(zji |{zj−1

l }Ns

l=1). This
permits to avoid storing all the training dataset to estimate the
density function. The underlying assumption is that the batch
size Ns is able to give a good representation of the likelihood
through the KDE. Formally:

KL
(
K
(
zi|{zj}Ns

j=1

) ∥∥ p(zi)
)
⋍ 0, (12)

where KL(·∥·) is the Kullback-Leibler divergence. On the
contrary, at inference time, we just check if the anomaly score
AL(zi) > η. This implies that, during deployment, we can
completely discard both the decoder D(·) and the KDE K(·),
just relying on the faster prediction of the encoder E(·) and
likelihood network L(·).

D. Loss Function

The objective of the loss function is to first induce the
DAKDM to learn the latent representation of normal data
and then to approximate AK(zi) with AL(zi). To this aim,
we consider the training dataset S train = {Bj}Nb

j=1, where
Nb is the number of batches in the training dataset and
Bj = {Xj

i }Ns
i=1 is the j-th mini-batch with Ns samples.

We define the total loss related to mini-batch j as follows:

Ljtot =
1

Ns

Ns∑

i=1

Lrec(X
j
i , X̂

j
i )

+
wKL

Ns

Ns∑

i=1

KLpoint

(
L(zji )

∥∥K
(
zji |{zj−1

l }Ns

l=1

))

+
wlik

Ns

Ns∑

i=1

(
−logK

(
zji |{zj−1

l }Ns

l=1

))
, (13)
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where Lrec(X
j
i , X̂

j
i ) = ∥Xj

i − X̂j
i ∥2 is the loss function

that describes the reconstruction error given by the AE, wKL
and wlik are the weighting parameters that control how much
the single losses affect the objective function as a whole and
KLpoint is the pointwise KL-divergence defined as:

KLpoint(x∥y) = x log
(
x

y

)
. (14)

With the second right-hand side of (13), we exploit the power
of the likelihood network to learn the KDE output trained
with the previous mini-batch. The choice of the loss function
is motivated by the fact that, if assumption (12) holds, then
we can write the contribution of zi to the anomaly score with
the following [96]:

− log p(zi) ≲ −logK
(
zi|{zj}Ns

j=1

)

+ KL
(
L(p(zi)|zi)

∥∥ p
(
K
(
zi|{zj}Ns

j=1

)
|zi
))

,

(15)

where L(p(zi)|zi) is the likelihood network that provides the
probability of zi given zi. For the proof of (15), please refer
to Appendix A. We directly insert the first right-hand side of
(15) in the loss function to induce the AE to decrease the
anomaly score, thus increasing the likelihood. On the other
hand, we do not have a KDE that provides the probability of
its predictions, therefore we consider the p(K(zi|{zj}Ns

j=1)|zi)
as a single deterministic value that we approximate through
the likelihood network.

V. SIMULATION EXPERIMENTS

A. 5G NR Network Simulation

To evaluate the proposed DAKDM method for NLOS
identification, we simulate realistic CSI data based on the 5G
NR clustered delay line (CDL) channel model [97] which is
characterized by a maximum bandwidth of 2 GHz over the
whole frequency range of 0.5 GHz to 100 GHz. We simulate
the wave propagation using a ray-tracing method [98], [99],
[100] provided by Antenna Toolbox Matlab package where the
propagation pathways from the UE to the BSs are computed
based on the surface geometry from a map file. Ray-tracing
uses the shooting and bouncing ray (SBR) method [101],
accounting for up to 10 path reflections. The method does
not take into account buildings’ windows and possible foliage,
which would require a high-definition 3D mapping of the
environment or a complex simulation with artificially created
maps. The channel model is then produced by coupling all
the paths taking into account the small-scale fading due
to the UE’s movement, angle spread and cluster properties.
This permits to achieve spatial consistency, meaning that two
adjacent positions present similar channel characteristics due
to comparable scattered environments.

B. Urban Mobility Scenario

For the experiments, we simulate a 3GPP urban micro
(UMi) scenario in an area of 1000 m × 1000 m, near the
Leonardo Campus of Politecnico di Milano, with specific
parameters described in [85]. As shown in Fig. 5, the scenario
comprises 19 urban sites, placed in an hexagonal layout with

Inter-Site Distance (ISD) of 200 m, each equipped with 3 cells.
The BS antennas are characterized by an UPA configuration
with M = N = 8 elements and a downtilt of 15◦. The
transmission power is 44 dBm and each antenna element was
defined using the specifications in [102], providing a front-to-
back ratio of about 30 dB and a maximum gain of 8 dBi.

The vehicular UEs move in the area traveling along different
trajectories generated with SUMO software which replicates
actual traffic patterns on a particular route network. We gen-
erate up to 50 trajectories sampled every second, for a total
simulation time of 170 s. Each UE is equipped with an omni-
directional antenna and transmits the 5G standard compliant
sounding reference signals (SRSs) to all the BSs in the area
using a carrier frequency fc = 30 GHz and a transmission
bandwidth B = 400 MHz. The BSs, which can be in either
LOS or NLOS condition due to occlusions and reflections,
demodulate the OFDM signal and estimate the channel using
a least squares (LS) estimator. Subsequently, they obtain the
channel fingerprint using the estimated channel response to
compute the angle-delay channel structure (7) and then the
associated power structure (8).

For the experiments, we do not consider the multi-user
interference (MUI), but it is worth mentioning few consid-
erations for possible real implementations of the method.
In practice, the BSs can adopt various techniques to manage
the inaccuracy of channel estimation due to factors such as
the MUI. One common technique is to use channel estimation
algorithms that are robust to MUI, such as linear minimum
mean-square error (LMMSE) [103] which obtains sub-optimal
performance (sub-optimal as it does not use the knowledge of
the full CSI) with moderate computational complexity. Addi-
tionally, other techniques may rely on non-linear pre-coding
schemes which have been found to provide near-optimal per-
formance [104], [105]. In the standard of 5G-NR, codebook-
based MIMO precoding techniques have been proposed and
they are described in the 3GPP technical specifications (TS)
38-214 [106] and 38-211 [107]. With latest releases, i.e., Rel
16 and 17, MU-MIMO codebook (type II) has been improved
with the reduction of the feedback overhead. By implementing
these techniques, the MUI is highly reduced and the residual
interference resembles to background noise. Moreover, in case
the model has been trained in a channel in presence of non-null
interference, we would have an even-broader LOS distribution
characterization, which would be beneficial in case of single-
user transmission.

C. CSI Dataset

In the offline phase, each BS is assured to gather LOS
only realizations of the channel, composing a training dataset
for the blockage detection. In the online phase, on the other
hand, we create the test dataset adopting unobserved positions
of the UEs and collecting a balanced number of samples
between LOS and NLOS conditions. We saved more than
7.5 · 104 and 8.6 · 104 samples in the training and testing
set, respectively. Before the training, all the samples are
standardized (i.e., transformed such that the mean intensity
is 0 with standard deviation of 1) and shuffled at each
epoch.
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Fig. 5. UMi scenario composed of 19 sites in the area of Politecnico di Milano, Leonardo campus, Italy. The signal-to-interference-plus-noise ratio (SINR)
is shown in downlink as a function of the UE position when BSs use trisectorial cells with broadside transmission.

MATLAB 2022a is used to create the channel fingerprints of
the data points, while the DL model for training and testing is
implemented using Pytorch [108] (v1.12 with Python 3.7.11).
We run our simulations on a workstation with an Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40 GHz, 96 GB of RAM and
a Quadro RTX 6000 24 GB GPU. The testing times, described
in Sec. V-F1, only apply to the run time on Pytorch 1.12.
Unless otherwise specified, we train the model for a number
of epochs E = 30 with a batch size Ns = 64. wKL and wlik are
both empirically set to 0.1. We adopted the Adam [109] with
an initial learning rate lr = 10−4, and momentum β1 = 0.9,
β2 = 0.999.

D. DL Model Characteristics
For the AE part, we adopt the Segnet architecture [110]

with one single channel encoder and decoder. The upsampling
layers employ the encoder pool indices to create a sparse
feature mapping which is ideal for reproducing the sparse
ADCPM input. The AE is the most complex part of the model,
however, at testing time, we use only the encoder part, thus
halving the inference time if compared with VAE models or
in general solutions that adopt the reconstruction error as a
monitoring feature.

On the other hand, we develop the likelihood network using
a simpler multi-layer perceptron (MLP) which is able to learn
whatever non-linear function. The network can be found in
Table I. To cope with the overfitting we adopt the dropout
technique [111] after each activation function. Furthermore,
we insert a single batch normalization layer [112] right before
the ReLU function. This is done to avoid that the output of the
network will converge to a unique value after a long training.

E. Baselines
To evaluate the performances of the proposed model,

we compare it against a number of DL approaches proposed
in the literature to solve anomaly detection problems:

TABLE I
LIKELIHOOD NETWORK LAYER COMPOSITION

• DAGMM [84]. Single-stage training model composed by
an AE and a GMM used for learning the latent feature
distribution. The membership weights, which represent
the probability that a given data point belongs to each
component, are usually computed with the expectation
(E)-step of the expectation-maximization (EM) algorithm
used for the GMM fitting. However, in this case, the
membership weights are produced by an estimation DL
network.

• AE-KDE [83]. Double-stage training model in which first
the AE is trained and then a KDE is used to learn the
distribution of latent features from all the training dataset.
The bandwidth and the kernel are the same of DAKDM.

• VAE [76]. Auto-encoding variational Bayes applied to
NLOS identification. Here, the sampling mechanism is
mandatory since we need to sample new latent variables
from the learned probability distribution, i.e., in this case
a Gaussian distribution. The anomaly score A(Xi) is
computed as A(Xi) = 1

Nm

∑Nm

j=1 Lrec(Xi, X̂
j
i ), where

Nm is the number of samples. As suggested by the
authors, we draw 10 samples from the latent space
representation to derive the anomaly score.
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• GANomaly [113]. Deep-generative model composed by
an AE, a second encoder and a discriminator. The model
minimizes simultaneously the reconstruction error, the
encoder loss given by the second encoder and the adver-
sarial loss yielded by the discriminator.

For a fair comparison, we give the same input to each model
and we adopt the unchanged architecture for the encoders and
decoders with respect to DAKDM. Therefore, we adopt the
same number of latent features for all architectures.

In addition to DL model baselines, we compare our method
with classical ML and statistical algorithms. In particular,
we implement:

• JLRT [63]. Joint-likelihood ratio test considering the
statistics of the kurtosis, mean excess delay and root-
mean-square delay spread. The PDFs of the statistics are
approximated as log-normal distributions and they are
considered independent of each other.

• RF [66]. Random forest model with 100 trees and,
as input features, the Rician K-factor, root-mean-square
delay spread, mean excess delay and dominant channel
tap.

• CORR [75]. Pearson correlation coefficient computed
using a reference set of LOS ADCPM sliced in the direc-
tion of arrival with higher received power. We gathered
100 LOS reference signals and we considered only the
samples comprising 10 points before and 100 points after
the first peak. The likelihood of a test input is obtained
by averaging the correlation coefficient with the reference
LOS signals.

• OC-SVM [58]. One-class support vector machine which
computes the smallest hyper-sphere containing normal,
i.e., LOS, samples. We use the score function as a
likelihood measure. As regards the feature selection,
we adopt both static channel characteristics as the max-
imum received power, kurtosis, skewness, rising time,
root-mean-square delay spread, Rician K-factor, angular
spread of arrival and both time-varying features [114] like
the angular variant of arrival.

Note that, while CORR and OC-SVM are semi-supervised
learning algorithms, JLRT and RF are supervised learning
methods since they require statistics/samples of both classes.
The models and algorithms are run independently by each BS,
after the UE uplink transmission. The training, if required,
is performed before the validation procedure at each BS using
the locally collected input samples.

F. Results

1) Inference Timings: In this assessment, we want to mea-
sure the time required by each DL model to predict the
output of a sample. This is of particular relevance in real-
time applications where the inference time must be as low
as possible. An example is the vehicular applications where
the end-to-end latency must be contained within 100 ms or
less [115]. In Fig. 6, we show the boxplot of the inference time
for each sample over the whole testing dataset. We notice that
the proposed DAKDM is able to predict the anomaly score in
half of the time with respect to DAGMM as it does not require

Fig. 6. Boxplot of the distribution of the inference time per sample [ms],
varying the adopted DL models.

the decoder part prediction. Moreover, GANomaly and AE-
KDE models require up to 4 ms for a single prediction. This
is because GANomaly holds a more complex model, while
AE-KDE has to pass through the whole training dataset for
a single prediction. Finally, VAE takes about ten times more
than DAKDM due to the sampling strategy.

2) Batch Size: This assessment has the goal of verifying
how the batch size Ns affects the performances of the proposed
DAKDM. Theoretically, Ns should be large enough to gener-
ate a good representation of the latent features’ distribution.
To verify this behaviour, in Fig. 7 we analyze the anomaly
score AL(zi) of normal (Fig. 7a) and anomalous (Fig. 7b)
samples in the testing dataset after 30 epochs for Ns =
{8, 16, 32, 64, 128}. To avoid singular issues due to possible
zeros values given as input to the logarithm, we shift the
likelihood distribution as AL(zi) = −log(L(zi)+1). The first
thing to notice is that the anomalous score of normal data is
lower than the abnormal data and this is because the likelihood
network outputs higher values for samples with normal dis-
tributions. Second, we observe that decreasing Ns for normal
data, will produce lower mean and variances distributions, thus
enhancing the NLOS identification capabilities. This is due to
the fact that with a large batch size, the model struggles to
learn the pointwise KL-divergence since in the loss function
we have the contributions of many points. On the contrary,
with lower batch sizes, the likelihood network learns exactly
which value assign to each latent representation. Reducing
Ns has the benefit of being suitable for simpler devices with
low computational capabilities, in exchange for higher training
times. As a trade-off between performances and training times,
we choose Ns = 16.

3) Hyper-Parameters Tuning: This experiment aims of tun-
ing the main hyper-parameters related to the density models,
i.e., the bandwidth h of the KDE for DAKDM and AE-KDE
and the number of GMM components, denoted with g, for
DAGMM. In Fig. 8, we report the area under the curve (AUC)
obtained in the testing set after 30 training epochs varying the
bandwidth h ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3, 6, 12} (Fig. 8a)
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Fig. 7. Comparison of the anomaly score AL(zi) after 30 epochs between normal and anomalous data, for varying batch size Ns.

for DAKDM and the number of GMM components g ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (Fig. 8b) for DAGMM. Starting
from Fig. 8a, we notice that the higher AUC is reached by
h = 0.2 and that for not optimal values, the AUC can differ
significantly. This is somehow due to the range values of zi
and to the number of points that we have. Since, in practice,
we have few anomalous samples, for tuning the bandwidth
we can simply rely on maximizing the likelihood of normal
samples varying the bandwidth. Comparing the results with
Fig. 8b, we see that DAGMM is not able to achieve high peaks
of performances in average, i.e., above 90% of AUC. This
means that the latent distribution cannot be well approximated
with less than 10 Gaussian distributions. Clearly, increasing
g will improve the performance but at the cost of a higher
complexity of the DAGMM estimation network.

4) Performance Comparison: In this last assessment,
we compare the performances of the proposed DAKDM with
the models described in Sec. V-E. In Table II, we report
the average AUC after 10 runs and the F-score, Accuracy,
Precision and Recall using a threshold on the anomaly score
related to 20% of FPR. We notice that the performances of
the AE-KDE (highlighted in green) are superior with respect
to all the others. The reason behind this is that the AE-KDE
represents the perfect unfeasible upper-bound, i.e., it requires
storing the whole training dataset for inference and thus
it can perfectly reconstruct the latent features distribution.
On the other hand, the lower-bound is represented by the
statistical JLRT method (highlighted in red), which obtains
an AUC of 63%. This method assumes the independence
of few hand-crafted features, which may not hold in any
situation. The second non ML-based method CORR reaches
an AUC of 64%, meaning that the LOS reference signals
are not a good representation of the LOS distribution. The
OC-SVM, a classical ML method, achieves a slightly higher
AUC due to its capabilities of projecting the original features
in a higher hyper-space (kernel trick). However, its main
limitations lay in the features-choice which, for sparse and

high-dimensional spaces, constitutes a non-trivial task. More-
over, we can notice that the precision (94%) is much higher
with respect to the recall (60%). This means that OC-SVM
tends to classify all test samples as LOS, learning a rough,
i.e., too general, LOS distribution. Finally, among classical
ML methods, the RF achieves the highest performances by
reaching an AUC of 79%. However, we remark that this
method requires the knowledge of NLOS samples, thus it
holds an advantage with respect to semi-supervised learning
methods.

Focusing now on the DL models, numerical results show
that they highly outperform the classical ML and statisti-
cal algorithms. Indeed, while deterministic feature extraction
might be more suitable for low-dimensional or simple chan-
nels, using the raw ADCPM as input to the CNN structure
allows the DL models to utilize the full potential of auto-
matic feature extraction, which contributes to the superior
performance of the DL methods in comparison to classical
ML and statistical algorithms. However, this does not exclude
the possibility of incorporating deterministic features in future
work to further improve the performance of the proposed
model. Among the DL methods, DAKDM (highlighted in
bold) and VAE hold the highest AUCs if compared with
DAGMM and GANomaly. In particular, DAKDM and VAE
outperform DAGMM and GANomaly of 7% and 16%, respec-
tively. The reasons behind this are that GANomaly is a very
complex network that requires a non-negligible effort in hyper-
parameter tuning and optimization, with additional issues in
training stability [79]. On the other hand, DAGMM is not able
to accurately learn the LOS latent feature representation due
to its limited number of Gaussian components. Both DAKDM
and VAE achieves the highest performances, i.e., 95% and
96% of AUC, but with two different methods. While VAE
imposes a simple latent distribution, DAKDM automatically
learns the low-dimensional LOS distribution thanks to the
KDE in training phase. However, the main advantage of
DAKDM is that it does not require sampling procedures
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Fig. 8. Comparison of the AUC reached after 30 epochs using (a) DAKDM and (b) DAGMM, for varying bandwidth h and number of GMM components
g, respectively. The mean value (red dot) is plotted together with the associated uncertainty (error bar) computed using the maximum and minimum values
of AUC as boundaries.

TABLE II
COMPARISON ON MEAN PERFORMANCE INDICATORS AFTER 10 DIFFER-

ENT RUNS BETWEEN THE PROPOSED DAKDM AND THE BASELINES

and necessitates only 10% of the inference time needed by
VAE (see Sec. V-F1). This makes it suitable for low-latency
and mission-critical applications such as V2X networks for
automated driving.

VI. CONCLUSION

This paper addressed the problem of high-dimensional chan-
nel distribution characterization for next generation cellular
networks. In order to demonstrate the method, we tackle
the problem of NLOS identification in a mm-wave MIMO
system with sparse space-time channel responses. We model
the problem within the semi-supervised anomaly detection
framework where LOS samples correspond to normal data
with peculiar characteristics and distributions. We propose a
deep autoencoding kernel density model (DAKDM) where
the manifold distribution of normal data is elaborated with
an AE that takes as input the sparse ADCPM which uni-
vocally map the position-dependent features of the chan-
nel. The AE is jointly learned together with a likelihood
network which is trained to learn the output of a KDE
that directly estimates the distribution of the latent features.

The DAKDM has the main advantage of learning what-
ever latent distribution without storing the whole training
dataset.

We validated the model in a 5G standard compliant UMi
scenario simulated with Matlab ray-tracing package, permit-
ting spatial channel consistency between adjacent positions.
The UEs are vehicles which move in the area according to
dynamics simulated by the SUMO software. Compared with
DL state-of-the-art models, results showed that the proposed
DAKDM is much more efficient, both in terms of inference
time and computational requirements. In particular, DAKDM
holds a prediction time per sample which is up to one fourth
and one tenth of GANomaly and VAE, respectively. This
makes it appropriate for edge devices with strong latency
requirements for mission-critical applications. From a per-
formance point-of-view, DAKDM is able to achieve simi-
lar performances of the top-performer VAE, outperforming
GMM-based method such as DAGMM of about 7%.

In the next years, ML and in particular DL methods are
expected to play a crucial role in next generation cellular
networks. Communication systems, but also localization tech-
niques, are required to increase performance capabilities and
types of services to accomplish increasingly high standards.
Thus, DL-based methods as the proposed DAKDM become
essential to push further the performances. A natural exten-
sion of our work would be to integrate NLOS mitigation
into the system in order to compensate the induced error
given by lack of visibility or directly integrate DL tech-
niques into positioning algorithms suited for high complexity
environments. A further direction of research could be the
extension to a cooperative inference framework where BSs
exchange mutual-soft information for accuracy enhancement.
Moreover, more realistic environments with simulated foliage
and dynamic obstructions should be explored. Challenges are
represented by NLOS situations, changes in the environment
and lack of possible representative samples for each feasible
location.
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Fig. 9. Variational inference problem as described in [116]. The generative
model is indicated by solid lines while variational approximation is reported
with dashed lines.

APPENDIX A
PROOF OF (15)

In this Appendix we provide a proof of the anomaly
score contribution given by zi. From the variational inference
approach [96], we can note that the likelihood network per-
forms the same objective of latent variable inference. To see
this parallelism, we recall the variational inference context
where we are given an observation h (i.e., latent variable)
from the prior distribution pθh with parameters θ. Subsequently,
a datapoint x is generated from pθx|h, which is considered
intractable. The objective is to estimate the exact posterior pθh|x,
also intractable, with a simpler variational posterior qϕh|x with
parameters ϕ. For a graphical representation of the problem,
please refer to Fig. 9 [116].

We can view the datapoint x as a compact representa-
tion of the channel zi and the latent variable h as the
distribution p(zi). Let us denote the probability as si =
pz(zi), which can be approximated with the KDE ŝi =
K
(
zi|{zj}Ns

j=1

)
, the likelihood network Lϕ(·) (with param-

eters ϕ) will be acting as the variational distribution qϕ(·).
Following this parallelism, the contribution of zi to the
anomaly score, i.e., negative log-likelihood, can be written as
follows:

−log pz(zi) = −log
∫

s

pz,si
(
zi, s

)
ds (16)

= −log
∫

s

Lϕ
(
s|zi

) pz,si
(
zi, s

)

Lϕ
(
s|zi

) ds

≤ −
∫

s

Lϕ
(
s|zi

)
log

pz,si
(
zi, s

)

Lϕ
(
s|zi

) ds (17)

where (17) is the consequence of Jensen’s inequality. It follows
that

−log pz(zi) ≤ −ELϕ

{
log pz,si

(
zi, s

)
−logLϕ

(
s|zi

)}

= −log pz(zi) + KL
(
Lϕ
(
s|zi

) ∥∥ psi|z
(
s|zi

))

⋍ −logK
(
zi|{zj}Ns

j=1

)

+ KL
(
Lϕ
(
s|zi

) ∥∥ pŝi|z
(
ŝ|zi

))
, (18)

where the approximation in (18) is due to (12), concluding the
proof.
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Efficient Latent Features Combina-
tion for Static Positioning

In this chapter, we deal with the task of CP through next-generation BSs which aim
at performing static positioning of a UE in an urban environment. The challenges are
how to perform real-time positioning in both LoS and NLoS environments by exploiting
the neighbors’ output in an efficient manner. In the paper, we propose an AE-based
model to extract an efficient non-linear representation of channel, comprising all RSS,
ToF, and AoA for every path. Subsequently, a NLoS identification model, trained in a
supervised way, assigns an estimate of the NLoS probability. In case we are in NLoS,
the latent features are used as fingerprint to perform localization with a single-BS, i.e.,
egocentric mode. On the contrary, in the case of LoS condition, the latent features
are exchanged among BSs, carefully combined, and adopted as input in a NN for
position estimation. In the simulations, we adopted ray-tracing technology for realistic
channel representation, and Simulation of Urban MObility (SUMO) software for creating
realistic C-ITS environment in an UMi environment. The results demonstrate that the
cooperative architecture particularly enhances the performance over traditional geometric
algorithms, and solves the limits of single-BS predictions with DL by dynamically
changing strategies based on the scenario.
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Cooperative Deep-Learning Positioning in mmWave
5G-Advanced Networks

Bernardo Camajori Tedeschini , Graduate Student Member, IEEE, and Monica Nicoli , Senior Member, IEEE

Abstract— In application verticals that rely on mission-critical
control, such as cooperative intelligent transport systems (C-ITS),
5G-Advanced networks must be able to provide dynamic posi-
tioning with accuracy down to the centimeter level. To achieve
this level of precision, technology enablers, such as mas-
sive multiple-input multiple-output (mMIMO), millimeter waves
(mmWave), machine learning and cooperation are of paramount
importance. In this paper, we propose a cooperative deep learning
(DL)-based positioning methodology that combines these key
technologies into a new promising solution for precise 5G
positioning. Sparse channel impulse response (CIR) data are used
by the positioning infrastructure to extract position-dependent
features. We model the problem as a joint task composed of non-
line-of-sight (NLOS) identification and position estimation which
permits to suitably handle geometrical location measurements
and channel fingerprints. The network of base stations (BSs)
automatically steers between egocentric (in case of NLOS) and
cooperative (for LOS) positioning mode. We perform extensive
standard-compliant simulations in a 5G urban micro (UMi)
vehicular scenario obtained by ray-tracing and simulation of
urban mobility (SUMO) software. Results show that the proposed
cooperative DL architecture is able to outperform conventional
geometrical positioning algorithms operating in LOS by 47%,
achieving a median error of 71 cm on unseen trajectories.

Index Terms— Cooperative positioning, deep learning, 5G,
channel impulse response, cooperative intelligent transport
systems.

I. INTRODUCTION

THE currently deployed release of 5th generation (5G)
cellular networks, 3rd generation partnership project

(3GPP) Release 16, lays the foundations for future location
awareness systems that are foreseen to extend the location
services (LCS) beyond regulatory use cases (i.e., emergency
and lawful interception) to include roaming and commercial
capabilities [1], [2], [3], [4]. These systems are made
possible by the use of higher frequencies, i.e., millimeter
waves (mmWave), with enlarged bandwidth, and massive
multiple-input multiple-output (mMIMO) technologies [5],
which enhance radio access technology (RAT)-dependent
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measurements in accordance with 3GPP standards [6], [7].
However, future releases of 5G and beyond, such as 5G-
Advanced from Release 18, will face challenges in achieving
the centimeter-level absolute accuracy required by the most
demanding 5G use cases due to higher path loss and frequent
blockages [8], [9].

Legacy solutions such as least squares (LS) multi-
lateration/angulation may struggle to effectively handle sit-
uations with low signal-to-noise ratio (SNR), multipath
ambiguities, and particularly non-line-of-sight (NLOS) con-
ditions [10], [11]. A potential solution is already foreseen by
a novel paradigm called integrated sensing and communication
(ISAC) [12], [13], [14]. Specifically, 5G base stations (BSs)
(also known as gNodeBs) can natively support ISAC through
the use of a joint signal processing framework, allowing
for a more efficient utilization of spectrum resources. The
integration of communication and sensing features on the
same hardware platform is, at present time, not yet been
commercialized. Nevertheless, synthetic datasets are emerg-
ing [15], [16], [17] with the clear objective of permitting
the design of novel artificial intelligence (AI) and machine
learning (ML) algorithms which will play a fundamental role
in next-generation networks [18], [19], [20], [21], [22].

In the context of cooperative intelligent transport systems
(C-ITS), connected automated vehicles (CAV) rely on ML,
and more specifically deep learning (DL), for various func-
tions, including identifying and segmenting objects within
images, controlling the vehicle and avoiding collisions, and
determining the most efficient route [23], [24]. Because of the
high complexity of such tasks (including precise positioning),
urban areas may install computing units, namely roadside
units (RSUs), on busy roads that CAV will be able to use
to offload part of the computing activities [25], [26]. Cooper-
ation between nearby RSUs, here referred to as BSs, is of
paramount importance for enabling network-based precise
localization [27], [28]. A key aspect is that, in 5G industrial
applications such as automated driving, BSs often have access
to a large amount of historical channel state information
(CSI) data that is continuously received from geolocalized
vehicles [29], [30].

While having a perfect knowledge of the overall CSI is
unfeasible, e.g., accurate delays, angle of arrivals (AoAs)
and power gains, the usage of estimates of the channel
impulse response (CIR) can be adopted by ML approaches
to learn relevant information about the environment and its
propagation characteristics [31]. It is important to observe
that not only LOS but also NLOS CIRs embed significant
location information, though embedded in distinct peculiar
distributions. Therefore, CIRs can be exploited in both cases
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for positioning goals. Distinguishing between LOS/NLOS con-
ditions is extremely important since the derived measurements
are fundamentally different. In case of LOS condition, the
extracted features can be combined by a cooperative set
of BSs as in conventional geometric methods in order to
enhance satellite positioning. On the contrary, NLOS features
represent a real challenge for the system since they are related
to a specific environment, acting as area-specific fingerprints.
A complete solution for both situations has yet to be found.
Therefore, in this paper, we propose a cooperative DL solution
for the joint problem of NLOS identification and 3D position
estimation that takes as input the high-dimensional sparse
CIRs. We model the problem of NLOS position estimation
as an egocentric system at each BS, while a cooperative
architecture is proposed for LOS conditions.

Table I and II list the main abbreviations and notations used
throughout the paper, respectively.

A. Paper Organization

The remainder of this article is structured as follows. Sec. II
presents an overview of the state of the art on wireless
localization with ML and DL. Sec. III describes the system
model, the MIMO-orthogonal frequency division multiplex-
ing (OFDM) channel and related angle-delay channel power
matrix (ADCPM) adopted as input for ML-based positioning.
In Sec. IV, we discuss the proposed supervised ML setting
and the DL model stored in each BS for the joint NLOS
detection-positioning task prediction. Sec. V extends the
model to be compliant with a cooperative architecture based on
a set of collaborative BSs for positioning purposes. Section VI
provides information on the simulated 5G scenario and com-
pares the proposed method with conventional positioning
algorithms. Finally, in Section VII, we draw the conclusions.

II. RELATED WORKS AND CONTRIBUTIONS

A. Early Works on NLOS Detection and Positionong
First works on NLOS identification and localization with

ML were applied to ultra wide-band (UWB) systems. They
typically used hand-crafted features of the channel, such as
energy, maximum power, rise time, mean excess delay, root-
mean-square delay spread, and kurtosis, as inputs [32], [33],
[34], [35], [36]. The most commonly used ML models in
these studies were Gaussian processess (GPs), support vector
machines (SVMs), and relevance vector machines (RVMs).
While achieving good results, these methods could not fully
exploit the ML potential as they heavily relied on a pre-defined
and limited set of features that could not express the whole
location information enclosed in the CSI.

Other methods, mainly based on received signal strength
(RSS) fingerprinting, were proposed for precise position-
ing using Wi-Fi technology [37], [38]. With the advent of
MIMO-OFDM systems in IEEE 802.11a/n protocol, allowing
for the extraction of CSI from commercial Wi-Fi devices, there
has been significant research on wireless positioning, behav-
ioral awareness, and target tracking using CSI. The access
to channel information over multiple carriers and antennas
gave the possibility to extract detailed information about the
propagation of the radio signal, and to learn not only the

position of the user [39], [40], [41] but also information
about the environment that shaped such propagation [42].
DL approaches were employed to directly learn the optimal
non-linear combination of features and produce the desired
NLOS classification or position estimation as output. Studies
in this field can be found in [43], [44], [45], and [46], adopting
convolutional neural networks (CNN) for feature extraction.

B. DL for High-Precision Positioning

In outdoor conditions, DL-based positioning is a relatively
new concept, but with a great potential of achieving high
levels of accuracy. Authors in [16] achieve a mean positioning
error of 1.5 m by using a cell-specific neural network (NN)
in 5G Rel. 15 networks, but considering LOS environments
only. NLOS prediction is handled through statistical tests [47]
or directly included into the model’s prediction [48], [49].
A recent study [50] adopted a variational autoencoder (VAE)
to extract features and impose a Gaussian distribution on
the latent features for the purpose of binary classification of
samples as LOS or NLOS. While the use of an autoencoder
(AE) to obtain a compact representation of the channel can
yield good results, the reliance on sampling-based methods
for prediction makes this approach not suitable for real-time
applications.

The employment of full CIR data, especially stacked into
image-shapes, has emerged recently as a promising approach.
Authors in [51] adopted both CIR (i.e., path power gain, phase
and time of flight (ToF)) as well as geographical information
(i.e., AoA and angle of departure (AoD)) to predict the user
equipment (UE) location. However, they assumed perfect CIR
knowledge by ray-tracing, which is hard to achieve under
practical conditions. Authors in [52] employed as input the
channel frequency response (CFR) matrix computed by prac-
tical channel estimation and augmented with additive noise at
training time. Despite achieving good results, the CFR matrix
does not explicitly express AoA nor ToF of each path and
thus may add complexity in feature extraction. A recent work
[53] adopted a 3D CNN with inception modules to directly
predict the position of a UE from an ADCPM. This approach,
however, highly relies on the fingerprint sampling-distance
and it is not able to distinguish between LOS and NLOS
conditions, treating each position as equal. In other words,
there are no distinctions between geometrical features, useful
in LOS environments, and merely NLOS position-dependent
fingerprints. Furthermore, no works are available in the litera-
ture on DL-based location estimation using data collected by
multiple cells, i.e., by the cooperation of BS’s. Works mainly
rely on centralized processing [54] or vehicle-to-vehicle (V2V)
communications [55], [56].

C. Contributions
In this paper, we address the problem of precise cooperative

positioning in urban environments covered by 5G mm-wave
networks and we propose a new DL-based approach that
allows to exploit the full potential of wideband space-time
CIR for localization. The main contributions are as follows.

• We propose a new method for the extraction of
location-related features from the CIR of 5G mmWave
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TABLE I
LIST OF ABBREVIATIONS

OFDM MIMO links. The channel is parameterized in
terms of ADCPM matrices, typically sparse, that can
be treated as images and used to capture the location-
dependent features. The sparse ADCPM directly includes
the AoAs and ToFs and is fully compliant with the
3GPP Release 16 standard, providing CSI data that is
representative of real 5G communication.

• We model the problem of NLOS identification and posi-
tion estimation as a joint task, proposing a novel loss
function to simultaneously learn a compact representation
of the channel, i.e., latent features, and maximize the
log-likelihood of the joint task.

• We develop a DL model for network-based localiza-
tion that automatically steers between ego-positioning
in NLOS environments and cooperative-positioning in
LOS situations, exploiting neighbors BSs predictions to
enhance the location accuracy.

• We simulate a realistic C-ITS scenario in an urban
environment. The simulated network is fully compliant
with the 5G standard [57] and provides realistic outdoor
conditions through the use of Matlab ray-tracing software.
We simulate multiple trajectories of vehicles, i.e., UEs,
created with simulation of urban mobility (SUMO) soft-
ware [58]. Simulations are used to assess the performance
of the DL-based method, showing significant gains over
conventional techniques.

Notation

We denote with j =
√
−1 the imaginary unit. Columns

vectors and matrices are denoted by lower- and upper-case
characters, respectively. Matrix conjugation, transposition and
conjugate transposition are indicated as AH , AT and A∗,

TABLE II
LIST OF NOTATIONS

respectively. We indicate the Hadamard and Kronecker product
between two matrices with ⊙ and ⊗, respectively. The symbol
E[·] is used for expectation of random variable, whereas C
and R are the set of complex and real numbers, respectively.
We denote with N (x;µ, σ2) the distribution of a Gaussian
random variable x with mean µ and standard deviation σ.
δ(·) and δ[·] indicate the Dirac delta and Kronecker func-
tions, respectively, while ⌊x⌋ represents the largest integer not
greater than x.

III. SYSTEM MODEL

In this section, we define the channel model and the
location-related channel fingerprints that will be used by the
proposed DL positioning algorithms in Sec. IV. For simplicity
of notation, we here report the multi-user single-BS case,
leaving the extension to a set of cooperative BSs in Sec. V.

A. Channel Model

Let us consider a wide-bandwidth multi-user MIMO-OFDM
system operating at carrier wavelength λc where K UEs com-
municate with a BS in uplink direction. The UE is equipped
with an omni-directional antennas, whereas a uniform planar
array (UPA) with N × M isotropic antenna elements (i.e.,
N and M elements in the vertical and horizontal directions,
respectively) is installed in the cell panel of the BS. The
antenna elements are separated by a distance d(h) and d(v) in
the horizontal and vertical direction, respectively. A multipath
channel with Nk paths is present between the BS and the
UE k. The overall scenario is represented in Fig. 1, where the
generic p-th path of the k-th UE channel is represented, jointly
with the direction of arrivals (DoAs) of the signal impinging
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Fig. 1. BS receiving the uplink signal from the k-th UE through an UPA. The
DoA of the p-th path is composed by the zenith angle θk,p and the azimuth
angle ϕk,p.

the antenna panel, composed by a zenith angle 0 ≤ θk,p ≤ π
and an azimuth angle 0 ≤ ϕk,p ≤ π.

We consider an OFDM modulation with sampling interval
Ts, Nc sub-carriers and symbol duration Tc = NcTs. The ℓ-
th sub-carrier has frequency fℓ =

ℓ
Tc

, ℓ = 0, . . . , Nc − 1 and
we assume that the cyclic-prefix duration Tg = NgTs is greater
than the maximum channel delay among all UEs, τMAX , while
Ng is the number of sampling interval that composes a guard
interval. The temporally resolvable propagation delay related
to the p-th path and k-th UE is indicated with rk,p = ⌊ τk,p

Ts
⌋.

According to this notation, we model the baseband CIR of
user k as [59]:

qk(τ)=

Nk∑

p=1

ak,p e
−j2π( dk,p

λc
−νk,pτk,p) e(θk,p, ϕk,p)δ(τ−τk,p),

(1)

where αk,p = ak,pe
−j2π( dk,p

λc
−νk,pτk,p) is the complex gain

of p-th path which also includes the frequency shift due to
Doppler νk,p and has average power σ2

k,p = E[|ak,p|2], dk,p =
cτk,p is the traveled distance (with c being the speed of light in
air), δ(τ−τk,p) is the delta Dirac function and e(θk,p, ϕk,p) ∈
CMN the array response vector [60]. We assume that over the
time interval τMAX , the rotation due to the Doppler is almost
constant.

Considering sampling time with rate 1/Ts and assuming
each different path independent and wide sense stationary [59],
we can write the CFR at the ℓ-th sub-carrier as [61]:

hk,ℓ =

Nk∑

p=1

ᾱk,pe(θk,p, ϕk,p), (2)

where ᾱk,p = αk,pe
−j2πτk,pfl are the equivalent channel gains

in the frequency domain. Concatenating the different CFRs
at each sub-carrier, we obtain the space-frequency channel
response matrix (SFCRM):

Hk = [hk,0 hk,1 . . . hk,Nc−1] ∈ CMN×Nc , (3)

which will be used in the next section for ADCPM extraction.

B. ADCPM Location Fingerprints

For location estimation, it is convenient to convert the
channel response to the angle-delay domain, where the iden-
tification of the LOS component (if present) and secondary
NLOS macro-paths is facilitated. In fact, in LOS condi-
tion, AoA and ToF can be effectively used to localize a
UE thanks to their geometric relationship with the location.
At the same time, in NLOS circumstances, different surround-
ing environments hold different channel parameters, acting
as location-dependent features (or fingerprints). Therefore,
we transform the SFCRM in (3) into an angle-delay channel
response matrix (ADCRM) by introducing the phase-shifted
discrete Fourier transform (DFT) matrices VM ∈ CM×M

and VN ∈ CN×N , where [VM ]i,j = 1√
M
e−j2π

i(j−M
2

)

M and

[VN ]i,j =
1√
N
e−j2π

i(j−N
2

)

N . We denote with F ∈ CNc×Ng the
matrix formed by the first Ng columns of Nc dimensional
unitary DFT matrix where [F]i,j = 1√

Nc
e−j2π

ij
Nc . Finally,

we compute the ADCRM as [53]:

Gk =
1√

MNNc
(VH

M ⊗VH
N )HkF

∗ ∈ CMN×Ng , (4)

where F∗ and (VH
M ⊗VH

N ) project the SFCRM into the delay
and angle domain, respectively.

For positioning purposes, we propose to use power-angle-
delay profile, represented by the ADCPM:

Pk = E[Gk ⊙G∗
k] ∈ CMN×Ng , (5)

where [Pk]i,j = E[|[Gk]i,j |2]. It can be shown indeed that
for N , M and Ng →∞, the ADCPM approximates a sparse
matrix with elements [Pk]i,j matching the i-th AoA and the
j-th ToF [53]:

lim
M,N,Ng→∞

[Pk]i,j =

Nk∑

p=1

σ2
k,pδ[i−mk,pN − nk,p]δ[j − rk,p],

(6)

where rk,p indicates the index of the j-th ToF and mk,pN +
nk,p refers to the index of the i-th AoA. Therefore, the
statistical information of the ADCPM enables the learning
by the DL model of the location-dependent characteristics,
delivering steady and trustworthy fingerprints for positioning.

C. DL Model Input

We propose to employ the ADCPM as a set of measure-
ments for location estimation. This sparse matrix provides
indeed a visual image of the multipath configuration in the
power-angle-delay domain from which a DL model such
as CNN can extract the most representative location-related
features. Additionally, since the first layers of CNN are often
sparse and collect the highly discriminating features, the CNN
eases features extraction from the ADCPM sparse channel
matrix [62]. Moreover, the ADCPM embodies all the relevant
information (i.e., ToF, AoA and RSS for every path) with
small storage and low complexity characteristics thanks to the
channel sparsity. To highlight this aspect, in Fig. 2 we show
an example of ADCPM Pk composed by Ng = 352 delay
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Fig. 2. Example of sparse channel power-delay-angle profile encoding the
UE location, represented by an ADCPM with Ng = 352 temporal samples
and NM = 64 spatial samples (resulting from N = M = 8 antennas)
(a) and in the transformed angle-delay domain (b).

samples and MN = 64 angle directions. The actual model
input can be seen in Fig. 2a, while the polar representation of
the ADCPM with physical AoAs and ToFs is in Fig. 2b. Even
in the absence of a large number of antennas or a high sample
resolution, the matrix sparsity is clearly visible. Therefore,
we propose to use the ADCPM as input to the model and
we denote the i-th sample with xi = Pi, dropping the index
k for ease of notation.

IV. METHODOLOGY: SINGLE-BS LOCALIZATION

In this section, we first tackle the localization problem in
a supervised setting in which a single BS has to locate the
UE. We propose a DL model (Sec. IV-A) and a loss function
for the joint task of position estimation and LOS identification
(Sec. IV-B). The approach will then be extended to the multi-
BS, i.e., cooperative, case in Sec. V.

A. Deep Learning Model

We assume a supervised ML setting in which both a
regression and a classification problem have to be solved by a
single BS. The regression problem refers to the estimation of
the UE’s position, while the classification problem concerns
the LOS/NLOS identification. We define the training dataset
as S train = {(xi,ui, si)}Ntrain

i=1 , where xi = Pi denotes the i-th
input sample (i.e., ADCPM channel response), ui represents
the 3D position and si ∈ {0, 1} is the Boolean identifier of the
sight condition. To validate the performances, we also hold a
similar test dataset S test composed of Ntest samples.

We note that the regression and classification tasks are
two interrelated problems that must be addressed accordingly.
In fact, if the UE lies in a LOS condition, its position can be
directly computed from the geometrical features of the direct
path (i.e., ToF, AoA and mean power), while NLOS typically
requires a finer training based on more complex multipath
fingerprints.

To extract such key features from the ADCPM samples
xi, we propose to employ an AE, with structure represented
in Fig. 3. The encoder E(·) is used to produce the hidden
(or latent) features zi (including the location-related infor-
mation embedded in the channel), while the decoder D(·)
tries to reconstruct the input samples obtaining x̂i. The AE
is designed so as to minimize a metric of the reconstruction
error ∥xi − x̂i∥22 [63], making the model able to reconstruct
the input xi from the low-dimensional data zi. This guarantees
that zi contains all the necessary and sufficient information to
accomplish the specific task.

The tasks herein considered are position regression and
LOS identification. Therefore, in principle, two NNs with zi
as input, should be sufficient. However, due to the major
difference between position estimation in LOS and NLOS
conditions, we propose to use three separate NNs: one for LOS
identification, one for position regression in LOS conditions
and one for position regression in NLOS conditions. Given the
overall model with parameters defined as W, the output of the
NNs is respectively: p̂s,i ∈ [0, 1], ûLOS,i ∈ R3 and ûNLOS,i ∈
R3. Specifically, p̂s,i = p(si) predicts the probability that the
sample xi relates to a UE in LOS condition, while ûLOS,i and
ûNLOS,i predict the 3D position of the UE in LOS and NLOS
settings, respectively. The overall position estimate, indicated
with ûi, is obtained by applying a threshold Γ to p̂s,i and
considering only ûLOS,i or ûNLOS,i according to the result:

ûi = Γ(p̂s,i)ûLOS,i + Γ(1− p̂s,i)ûNLOS,i. (7)

The position estimates in LOS and NLOS are then adopted in
the loss function for the model training, described in the next
section.

B. Loss Function for Joint Sight Detection and Localization

In order to train the model, we have to define a loss
function whose objective is to enable learning the correct
representation of the latent features and, at the same time,
jointly estimating the sight condition and the location. To this
aim, we first treat separately the classification and regression
tasks and then we combine them with an overall objective
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Fig. 3. Overview of the proposed model composed by an autoencoder (AE) for feature extraction, and 3 neural networks (NNs) for NLOS classification and
position estimation in both LOS and NLOS conditions.

function. For the classification task, we propose a discrimina-
tive probabilistic approach, namely the maximum likelihood
[64], where we directly define the posterior conditional prob-
ability p(si|xi) using a parametric model W, i.e., p(si|xi) =
p(si|xi,W). Subsequently, we maximize the likelihood of
the model p(si|xi,W), by optimizing the parameters W
over the training set. For the specific binary classification
problem, the likelihood function is:

p(si|xi,W) = p̂s,iδ[si − 1] + (1− p̂s,i)δ[si]. (8)

For the regression task, we reiterate the discriminative
approach with the constraint of belonging to a specific condi-
tion, either LOS or NLOS. Again, this is done considering that
the two circumstances hold different statistics. We assume that
in the LOS case, the target variable ui (i.e., the location) is
Gaussian distributed with a deterministic mean ûLOS,i(xi,W):

ui = ûLOS,i(xi,W) + ϵϵϵLOS, (9)

where ϵϵϵLOS is a zero-mean random Gaussian variable with
covariance CLOS = I3σ

2
LOS, and I3 denoting the 3×3 identity

matrix. The likelihood function is thus given by:

p(ui|si = 1,xi,W,CLOS)

=NNN (ui; ûLOS,i(xi,W),CLOS). (10)

Similarly, the likelihood function of the regression problem in
NLOS conditions can be written as:

p(ui|si = 0,xi,W,CNLOS)

=NNN (ui; ûNLOS,i(xi,W),CNLOS). (11)

Note that the requirement on the mono-modality of ui, both
in LOS and NLOS, can be easily disregarded by applying for
example a mixture of experts model [65].

Combining (8), (10) and (11), we define the joint likelihood
for the variables (ui, si) as:

p(ui, si|xi,W,CLOS,CNLOS)

= p̂s,iδ[si − 1]NNN (ui; ûLOS,i(xi,W),CLOS)

+ (1− p̂s,i)δ[si]NNN (ui; ûNLOS,i(xi,W),CNLOS). (12)

A representation of the distribution can be found in Fig. 4.
In order to maximize the likelihood, we insert the negative
log-likelihood in the loss function. It can be shown that the
the negative log-likelihood of a batch of independent samples
can be written as (see Appendix A):

Ltask ⋍ −log
Nb∏

i=1

p(ui, si|xi,W,CLOS,CNLOS)

=

Nb∑

i=1

{
si ·
[
−log(p̂s,i) +

∥ui − ûLOS,i∥22
2σ2

LOS

]

+ (1− si) ·
[
−log(1− p̂s,i) +

∥ui − ûNLOS,i∥22
2σ2

NLOS

]}
,

(13)

where Nb is the batch size. Whenever the LOS condition
occurs, the second right-hand side of (13) does not contribute
to the likelihood, whereas if NLOS holds, only the first right
hand side is considered.
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Fig. 4. Joint likelihood distribution of (ui, si). Here, for sake of simplicity,
the multi-dimensional Gaussian distributions are represented as uni-variate.

Finally, the complete adopted loss function is:

Ltot =
wrec

Nb

Nb∑

i=1

∥xi − x̂i∥22

+
1

Nb

Nb∑

i=1

{
wssi ·

[
−log(p̂s,i) + wu∥ui − ûLOS,i∥22

]

+ (1− si) ·
[
−log(1− p̂s,i) + wu∥ui − ûNLOS,i∥22

]}

(14)

where wrec regulates the sample reconstruction, ws compen-
sates the unbalances between LOS and NLOS samples and wu
controls the uncertainty of the model on the position estimation
and includes both σ2

LOS and σ2
NLOS.

V. METHODOLOGY: COOPERATIVE LOCALIZATION

In this section, we extend the approach for UE positioning
to a multi-BS scenario. We present at first the proposed
cooperative AE architecture and then the cooperative training
procedure that can be used in practice to deploy the set of BSs
composing the localization infrastructure.

A. Cooperative Architecture

We propose a cooperative architecture where each BS
adopts a cell-specific DL model. The main assumptions behind
the proposed architecture are the following. First, each BS is
able to evaluate whether a UE is in LOS or NLOS condition
based on the observed ADCPM and the procedure described
in Section IV. Second, in case of NLOS, a position estimate is
obtained by the BS by means of a previous fingerprint training
procedure. Third, the latent geometrical features adopted by
the LOS position estimation are combined in order to get
a more accurate inference. This is somehow intuitive if we
consider the latent features as a sort of non-linear combination
of ToF and AoA measurements that each BS can share with
the neighbors’ cells.

Let us denote by SBS,i = {1, . . . , SBS,i} the set of BSs
which detect a UE at timestep i, and gather a batch of
samples Xi = {x(j)

i }
SBS,i
j=1 . Note that the number of detected

BSs can vary at every timestep, without being constrained to
detect a minimum number of BSs, as opposed to classical
geometrical approaches. As illustrated in the pseudo-code in

Algorithm 1 Cooperative Position Inference

Input: sample x
(j)
i , neighbors’ BS N (j)

i ▷ Run on BS j at
timestep i

Output: estimated position û
(j)
i

1: Encode sample x
(j)
i through encoder E : z(j)i ← E(x

(j)
i )

2: Initialize the latent features
z
(j)
s,i ← z

(j)
i , z(j)LOS,i ← z

(j)
i , z(j)NLOS,i ← z

(j)
i

3: Predict probability of LOS condition p̂(j)s,i from z
(j)
s,i

4: for j′ = 1, 2, . . . ,N (j)
i do

5: Send {p̂(j)s,i , z
(j)
LOS,i} to j′

6: Receive {p̂(j
′)

s,i , z(j
′)

LOS,i} from j′

7: end for
8: Assign ẑ

(j)
PLOS,i ← 1∑SBS,i

j′=1
p̂
(j′)
s,i

∑SBS,i
j′=1 p̂

(j′)
s,i z

(j′)
LOS,i

9: Predict LOS position û
(j)
LOS,i from ẑ

(j)
PLOS,i

10: Predict NLOS position û
(j)
NLOS,i from z

(j)
NLOS,i

11: Estimate position û
(j)
i ← Γ(p̂

(j)
s,i )û

(j)
LOS,i+

Γ(1− p̂(j)s,i )û
(j)
NLOS,i

Algorithm 1, the main idea is that, for position inference, each
BS j computes its latent features z

(j)
i . At this stage, there is

no difference between z
(j)
i , z(j)s,i , z

(j)
LOS,i, and z

(j)
NLOS,i and the

inference proceeds as in the single-BS method. Then, if the
BS predicts a NLOS condition, the latent features extracted
by that BS are not combined with other cells (e.g., as a
multi-lateration) and position estimation continues according
to the û

(j)
NLOS,i prediction. On the contrary, if we are in LOS

condition, then the latent LOS features z
(j)
s,i are exchanged

with the neighbors’ cells, defined with N (j)
i = SBS,i\{j}.

After averaging the latent LOS features z
(j)
s,i , the position is

estimated with û
(j)
LOS,i.

As an example of cooperative inference, we refer to the
scenario shown in Fig. 5 where three BSs detect a UE, here
represented by a vehicle. NLOS and LOS links are indicated
with red and green dashed arrows, respectively. Since BS j
and j′′ are in LOS condition with respect to the vehicle, the
contribution of z(j)s,i and z

(j′′)
s,i to the position estimation will be

higher than z
(j′)
s,i . The negligible contribution of NLOS BSs

is highlighted with red solid arrows while significant latent
features are colored in green. This is due to the fact that the
probability of LOS condition of BS j′ will be low, i.e., p̂(j

′)
s,i <

p̂
(j)
s,i and p̂(j

′)
s,i < p̂

(j′′)
s,i . The outcome is an increased accuracy

on the position estimation which is not or little affected by
NLOS BSs.

B. Cooperative Training

For the training of the cooperative set of BSs we propose
the following procedure. During the data gathering phase, a
UE (e.g., a vehicle) moves along specified trajectories (a-
priori divided into LOS and NLOS segments) sending uplink
signals, i.e., sounding reference signal (SRS), to every BS in its
range. The time instant of the transmission, the coarse position
obtained from global navigation satellite systems (GNSS) and
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Fig. 5. Cooperative inference scenario composed of three BSs.

the LOS identification are either sent to the BSs as auxiliary
data through the communication link, or stored inside the UE
for the post-processing. As for the inference, the BSs evaluate
the ADCPM samples and store the data. In order to perform
back-propagation at BS j, the loss function is computed as:

L(j)
tot =

wrec

Nb

Nb∑

i=1

∥∥∥x(j)
i − x̂

(j)
i

∥∥∥
2

2

+
1

Nb

Nb∑

i=1

{
wss

(j)
i

[
wu

∥∥∥u(j)
i − û

(j)
LOS,i(z̄

(j)
LOS,i)

∥∥∥
2

2
− log(p̂(j)s,i )

]

+(1− s(j)i )
[
wu

∥∥∥u(j)
i −û

(j)
NLOS,i(z

(j)
NLOS,i)

∥∥∥
2

2
− log(1−p̂(j)s,i )

]}
,

(15)

where z̄
(j)
LOS,i =

∑SBS,i
j′=1 s

(j′)
i z

(j′)
LOS,i/

∑SBS,i
j′=1 s

(j′)
i . Note that,

to speed up the training phase, a centralized loss computation
can be performed in a batch-manner, i.e., in parallel way, using
SBS,i as batch size. The rational behind this approach is that
while the models for NLOS position estimation are trained to
be BS-specific, the LOS networks can be shared as they have
consistent parameters among all the BSs.

VI. PERFORMANCE ASSESSMENT IN A 5G NETWORK

To assess the performance of the proposed cooperative DL
positioning system, we employ a data generator based on the
5G new radio (NR) clustered delay line (CDL) channel model
[66], which is defined over a bandwidth of 2 GHz in the
frequency range from 0.5 GHz to 100 GHz. The radio wave
propagation is simulated using a ray-tracing method [67], [68],
[69] from the Matlab package, which plots the propagation
paths from the UE to the BSs based on the surface geometry
from a map file. The ray-tracing method employs the shooting
and bouncing rays (SBR) method with up to 10 path reflections
[70]. The channel model is then generated by combining all
the paths and taking into account the small-scale fading caused
by multipath and UE’s movement. With this method, adjacent
positions will have similar channel characteristics due to the
similar scattering environment, ensuring spatial consistency.

TABLE III
EXPERIMENT PARAMETERS

A. Simulated Scenario

For the experiments, we simulate a 3GPP urban micro
(UMi) scenario in a 1000 × 1000 m area, near the Leonardo’s
campus of Politecnico di Milano, in Milano, Italy, using
the parameters described in [57]. The specific values are
summarized in Table III. As shown in Fig. 6, the scenario
consists of 19 sites with an inter-site distance (ISD) of 200 m,
placed in an hexagonal layout, each equipped with 3 cells and
separated by 120 deg in azimuth. Each cell antenna uses an
UPA configuration with N =M = 8 elements and a downtilt
of 15 deg. A macro image of the antenna array pattern can
be found in Fig. 7. Each antenna element was defined using
specifications in [71], providing a front-to-back ratio of about
30 dB and a maximum gain of 8 dBi.

The UEs move around the region following various routes
generated by the SUMO simulator that reproduces the vehic-
ular traffic flow over the considered road network. The
simulation runs for 170 seconds and generates up to 50 trajec-
tories, which are sampled every second. Each UE uses a carrier
frequency of fc = 30 GHz and a transmission bandwidth of
B = 400 MHz to transmit 5G standard compliant SRSs to
all nearby BSs. Finally, each BS demodulates the signals and
obtains a channel estimation, i.e., SFCRM, via the received
pilot signals through a LS estimator. The ADCPM is then
obtained according to (4) and (5).

B. Positioning Tests

We divided the experiments into offline and online phases.
In the offline (training) phase, the UE moves along the
trajectories and each BS gathers both LOS and NLOS
channel realizations according to the specific UE’s position.
We considered the training positions as perfectly known (i.e.,
no error was introduced to the ground truth positions) as
we aimed at assessing the lower bound performances of the
method. In total, we gathered about 5.9 · 104 samples in
1659 positions only for the training phase. In the online (test)
phase, the NLOS position capabilities were verified in the
same trajectories but in random positions not adopted in the
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Fig. 6. UMi scenario simulated for performing analysis composed of 19 sites
in the area of Politecnico di Milano, Leonardo campus, Milano, Italy.

Fig. 7. Antenna array patterns of 3 cells (1-3) forming a site.

training. Specifically, we adopted about 2.5 · 104 samples
in 711 positions for NLOS testing. In this way, we assess
whether or not, each BS can learn the environment, i.e., the
channel characteristics, around it. On the other hand, for LOS
positioning, we validated completed different trajectories to
analyze the capabilities of estimating the position from learned
geometrical features. Here, the total number of LOS tested
positions was 867. A representation of the adopted trajectories
can be found in Fig. 8. Note that in the training trajectories,
i.e., red markers, the number of detected BSs can vary signif-
icantly: we measured from 1 up to 13 BSs in the collected
samples. The test samples for LOS evaluation, highlighted
with purple placeholders, are located in the top-left corner
of the map. To avoid biases and improve model convergence,
before model training, we standardized with zero mean and
unitary standard deviation all the samples, and we shuffled
the dataset at each epoch.

The toolbox Antenna Toolbox of MATLAB 2022b is
used to generate the channel fingerprints for the data points,
while the model for training and testing is implemented using
Pytorch [72] (v1.12 with Python 3.7.11). The simulations are
run on a workstation with an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40 GHz, 96 GB of RAM, and a Quadro RTX 6000
24 GB GPU. The training and testing times refer only to the
runtime on Pytorch 1.12. Unless otherwise noted, the model is
trained for a total E = 60 epochs with a batch size Nb = 64.
The Adam optimization algorithm [73] is used with an initial
learning rate lr = 10−4 and momentum values β1 = 0.9,
β2 = 0.999.

For what concerns the hyper-parameters choice of wrec, ws
and wu, we clarify that their values depend on the specific
dataset at hand and thereby tuning has been performed as
follows. Starting from ws, since this parameters regulates how
much weight is given to the LOS samples class in order
to compensate the class unbalances, it is computed as in
weighted cross-entropy loss: ws = NLOS/NNLOS, where NLOS
and NNLOS are the number of LOS and NLOS samples in the
training batch, respectively. On the contrary, wrec and wu have
been chosen empirically using a grid-approach in [0.1, 1] with
step size 0.1 and assigned as: wrec = 0.1, wu = 0.9. This can
be intuitively explained by two reasons. First, the AE model
is much more complex than the MLPs for positioning, leading
to a fast drop of the reconstruction error. Second, the number
of features in xi is larger than the dimension of ui, which
automatically increases the weight of the reconstruction error
with respect to the positioning error. In order to balance these
two quantities, we suggest values that satisfy wrec < wu.

C. DL Model Design

The adopted DL model architecture is as follows. The AE
is the most critical component as a good feature extraction is
essential to enable precise positioning. Driven by the necessity
of handling sparse data, i.e., ADCPM input, we select the Seg-
net architecture [74] where the upsampling layers employ the
encoder pool indices to create ad-hoc sparse feature mapping.
At testing time, we can completely discard the decoder part as
the input reconstruction is only adopted in the training phase
to learn the latent features representation.

The choice of the NNs for NLOS classification and position
estimation is dictated by the specific task to accomplish. A BS
must be able to localize a UE regardless of whether it is in ego
mode, i.e., only a single BS detects the UE, or in cooperative
mode, i.e., the UE is detected by multiple BSs. In the former
case, the latent features should be a non-linear composition of
ToF and AoA for each of the multipaths. On the other hand,
in the latter case, multiple ToF must be exploited to localize the
UE. To assess these concepts, we experiment different multi-
layer perceptrons (MLPs) architectures trying to localize a UE
with only a ToF and AoA or 3 or more ToF as inputs.

In Fig. 9, we show the test results of the MLP described
in Table IV which was trained on a synthetic dataset using as
input either ToF and AoA only (Fig. 9a), or 3 measurements
of ToFs (Fig. 9b) or 10 ToFs (Fig. 9c). This was done in
order to verify the positioning capabilities of the models, i.e.,
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Fig. 8. Scenario comprising training trajectories, i.e., red placeholders, and
LOS testing trajectories, i.e., purple placeholders.

to assess the bias of the MLPs for LOS and NLOS position
estimation. Since the testing positions (red circles) are never
seen in the training phase, we can conclude that the model is
able to learn the geometrical meaning of the input features and
perform multi-angulation and circular lateration. It is worth
noticing that, in the case of cooperative architecture, the BSs’
positions (black squares) are never used as input features but
they are automatically learned by the training. This can be an
advantage in case the coordinates of the BSs are not known
or partially known.

Given these results, we employed the MLP in Table IV
for the LOS and NLOS position prediction NNs, while the
MLP in Table V is adopted for NLOS detection NN. The key
difference between these two types of NNs is the size and
layer composition. First, we assumed that single supervised
NLOS classification is a simpler task if compared with 3D
position regression, thus resulting in a different number of
layers and neurons. Second, we employed Tanh (instead of
ReLu or GeLu) activation functions in the NLOS detection NN
since blockage detection should be performed in the fastest
and most efficient way possible, as the whole cooperative
prediction highly depends on it. On the contrary, GeLu is
more computationally expensive but can capture more complex
patterns (as needed for regression) due to its smooth and
differentiable nature [75]. Finally, both adopt dropout to avoid
overfitting.

D. Baselines

For performance assessment, we compare the proposed
method with the following algorithms/models:

• Ego DL model: the proposed DL model (Fig. 3) trained
with the loss (14) for single-BS positioning. The model
does not communicate with any other BS and has to rely
only on its prediction.

• Cooperative DL model: the proposed DL-based coopera-
tive architecture described in Sec. V.

• Single-BS ToF-AoA: conventional positioning obtained
by a single BS using the ToF estimate obtained from
the cross-correlation with the SRS according to 5G NR
Rel. 16 and the AoA estimated through multiple signal
classification (MUSIC) algorithm [76].

• Multi-BS time difference of flight (TDoF): conventional
hyperbolic-multilateration obtained using TDoFs esti-
mated by all the BSs receiving SRS.

E. Simulation Results

1) Training Convergence: This first assessment has the aim
of verifying the training convergence of the proposed ego
DL model, i.e., the correct behavior of the loss function and
of the root mean square error (RMSE) performance metric.
In Fig. 10, we report the testing results separately for LOS
and NLOS samples in the test set, for varying number of
training epochs. We notice that the loss function decreases
quite rapidly in just 60 epochs and does not show signs of
overfitting. This may be due to the fact that the dataset is very
large (about 50 GB) and thus it is difficult to memorize every
sample. Furthermore, the model regularization, i.e., dropout,
helps with this aspect.

Referring to the performance metric, we can see that the
NLOS case holds much higher oscillations with respect to the
LOS one. While learning geometrical patterns and associated
positions is a more standard task, associating NLOS samples
with the UE location is much more difficult. The DL model
has not only to understand how the environment is configured
but also how it could change between the training positions.
Finally, we note that the LOS RMSE is slightly worse that the
NLOS. This is due to the LOS performance bounds imposed
by the physical layer parameters, i.e., the resolution of the ToF
(limited by the signal bandwidth) and AoA (by the number
of antennas). On the other hand, the NLOS RMSE highly
depends on the training position resolution, i.e., the training
spatial sampling, as the denser the training points, the better
the performances.

2) Blockage Detection: This experiment has the objective
of assessing the steering model capabilities in discerning LOS
and NLOS conditions. The steering is taken into account in
both the smart weighting of the geometrical latent features
and in the final position estimate, i.e., lines 8 and 11 of
Algorithm 1, respectively. To this aim, in Fig. 11 we show
the testing accuracy, precision and recall for varying number
of training epochs. The numerical results show that the model
reaches an accuracy of approximately 85%, validating the
capability of the proposed approach of learning the multi-task
problem within such a realistic environment. In terms of the
parameter Γ, we implemented a conservative yet effective
approach, as detailed subsequently. We selected Γ = 0.6 not
with the aim of matching the values of precision and recall,
but rather to adjust it towards a lower number of false positives
compared to false negatives. This approach is driven by the
rationale that if the model is uncertain about the visibility
condition, it slightly leans towards the NLOS case. As a result,
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Fig. 9. Testing positioning results of an MLP with input (a) AoA and ToF, (b) 3 ToFs (c) 10 ToFs. The BSs are located in the black squares.

TABLE IV
LOS AND NLOS POSITIONING NETWORK

TABLE V
NLOS CLASSIFICATION NETWORK

substantial geometric errors are circumvented, and only the
fingerprint technique is employed.

3) Online Computational Complexity: In this section,
we analyze the computational complexity of the proposed
localization method by assessing the number of floating
point operations per second (FLOPS) and the inference time
required for performing positioning. Starting from the com-
putational complexity, we can divide the computational load
into measurement extraction and position estimation. For
measurement extraction, assuming to have Ng signal samples
and MN antenna elements, the ADCPM can be efficiently
computed adopting a 2D-inverse fast Fourier transform (IFFT),
with a complexity of O(MNNg · (log(NgMN))). On the
other hand, time-based measurements obtained with cross-
correlation, hold a complexity in the order of O(N2

g ) (or
O(Ng · (log(Ng))) with efficient methods as FFT). Finally,
angle-based measurements obtained by the MUSIC algorithm
using N and M scanning directions in the azimuth and
zenith domain, respectively, involve an overall complexity of
O((MN)

3
) [77], considering the eigenvalue decomposition

(EVD) on the signal covariance matrix as predominant on
the scanning search for source directions. In order to have a
reference measure of time required by our system (described
in Sec. VI-B) to compute the measurements, we clarify
that on average, the ADCPM, ToF and AoA computations
took about 0.4, 0.3 and 0.4 ms, respectively. As expected,
the complexity of the ADCPM results higher than single
time-based or angle-based measurements, as it embodies all
the location-related information provided by the propagation
channel, i.e., including the ToFs, AoAs and received power of
all multipaths.

For what concerns the algorithms for position estimation,
we compare non-linear least square (NLS) methods, adopted
in Single-BS ToF-AoA and Multi-BS TDoF, and the proposed
DL model. Denoting with Nu the unknown location coor-
dinates to be estimated, Nmeas the number of measurements
and Niter the number iterations for NLS convergence, for
Gauss-Newton method we hold an overall complexity of
O(Niter(Nmeas · Nu + Nmeas · N2

u + N3
u )) (assuming that the

cost of computing the Jacobian is roughly proportional to
O(Nmeas · Nu), the cost of Jacobian matrix multiplication
to O(Nmeas · N2

u ), and the matrix inversion to O(N3
u )).

However, estimating the complexity of the DL models is
not straightforward as it would involve a detailed break-
down of the operations performed. To this aim, in Fig. 12,
we empirically assess the inference times using the system
hardware described in Sec. VI-B and we compare it with
NLS solutions, for varying number of measurements. For NLS
method, we empirically choose Niter = 50 and Nu = 3 (3D
position). Results show that the proposed DL model is able
to perform the position inference in about 1.5-2 ms which
corresponds to a NLS with about 10 measurements. We point
out that these results highly depend on the specific hardware
and implementation of both the DL and NLS algorithms.
Nevertheless, the overall conclusion is that, despite being
slightly more complex, the proposed method has the main
advantages of having greater accuracy with respect to classical
geometrical algorithms and retaining the ability to localize in
NLOS conditions (as described in Sec. VI-E.4), while being
at the same time compliant with the strict requirements given
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Fig. 10. Testing results, i.e., loss on top and RMSE on bottom, of LOS and
NLOS samples varying the number of epochs in the training.

by cooperative, connected, and automated mobility (CCAM)
of 5 ms [78].

4) Positioning Accuracy: In this assessment we test the
positioning accuracy of the methods described in Sec. VI-D.
To this aim, in Fig. 13 and 14, we show the cumulative
density functions (CDFs) of the location error in the LOS
and complete test trajectory, respectively. For the cooperative
methods, we consider a position LOS if all the BSs detecting
the UE are in LOS. To better compare the results, in both the
figures, we report both the 2D and 3D error for each method.

Starting from the position methods with single BS in the
LOS positions, we notice a huge improvement between the
Single-BS ToF-AoA and the ego DL model, passing from
a mean error of 26.38 m to 5.99 m in 3 dimensions. With
the 2D error metric, the performances are slightly better,

Fig. 11. Testing results of classification accuracy, precision and recall varying
the number of epochs in the training.

Fig. 12. Boxplot of the distribution of the inference time per sample [ms].

obtaining 24.76 m and 5.35 m, respectively. The ego DL model
automatically extracts a compact non-linear representation of
the overall multipath profile (i.e., ToF, AoA and power of
all paths in LOS conditions), which is much more infor-
mative than the direct path information, thus outperforming
the traditional single-BS based positioning. Moreover, in 3D
positioning, it outperforms even the Multi-BS TDoF. This is
due to the fact that, in classical TDoF approaches, the vertical
geometrical dilution of precision (GDoP) is very limited due to
the poor geometrical arrangement of the BSs over the vertical
dimension, as BSs are usually located at similar heights.
On the contrary, the ML approach is able to learn the usual
altitude of the user and exploit this information a-priori in the
position’s computation.

Moving to the cooperative methods in the LOS testing
trajectory, we observe that the proposed cooperative DL model
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outperforms the Multi-BS TDoF even in the 2D positioning
case, i.e., holding 66% of the points with an error of less than
0.81 m and 90% with an error of less than 1.3 m. The mean
error decreases from 3.21 m with Multi-BS TDoF, to 1.68 m
with the cooperative DL solution, with an improvement of
above 47%. The cooperative DL model, in fact, holds a
common-sense of where the UE could be, i.e., discarding or
not considering possible unfeasible solutions that could be
obtained by geometrical algorithms.

This is confirmed by the results on the complete testing
trajectory in Fig. 14, composed by both LOS and NLOS
positions. Whenever one or more BSs are in NLOS, we suffer
a severe degradation of performances. In these conditions, the
ego DL model reaches a median 2D error of 3.01 m with
respect to an error of 3.74 m in case of Multi-BS TDoF.
Comparing the cooperative and ego DL models, we notice an
approaching of the two CDFs, mainly due to the higher NLOS
performances in case of ego-positioning. This is because,
even when LOS positions are inaccurately classified, the
positioning is corrected through fingerprint training without
being impacted by errors in geometrical features. Essen-
tially, the position estimation solely relies on either the LOS
MLP or the NLOS MLP, but never a combination of the
two. On the other hand, the cooperative DL model suffers
slightly higher errors since in NLOS positions the BSs cannot
cooperate.

In case the achieved performances do not satisfy the target
accuracy for the specific location-sensitive service, several
strategies can be implemented in order to improve the pro-
posed method without changing the structure of the model.
First, starting from the physical layer, increasing the band-
width and number of antennas at the BSs would permit to
enhance the space-time system resolution, and thereby the
ability of the model to resolve the multipath and extract
location information from the ADCPM. Second, from a design
point of view, we can increase the DL model dimension
(especially the AE part), which reduces the model bias, and
simultaneously increase the number of collected data, thus
reducing the variance. However, we need to keep in mind
that this comes at the price of higher training and inference
times, as well as higher costs of dataset creation, resulting in
a performance-complexity trade-off.

5) Tracking Performance: This experiment compares the
performances of the positioning methods in the testing tra-
jectory where a UE, i.e., a CAV, moves along a road at
variable speed. In Fig. 15, we can see in pink the covered
ground-truth trajectory both in 3D (a) and in 2D (b). The
CAV moves faster in the north part of the trajectory and
then slows down in the southern part of the road. Since the
objective is to assess the point-position estimation of each
method, we do not implement any tracking filter and we
rely exclusively on the channel realization at specific samples
of the trajectory. Moreover, passing from the 3D to the 2D
representation, we discard unlikely estimated positions just for
easy-visualization purposes of the 2D trajectory. The Single-
BS ToF-AoA and the ego DL model results are obtained from
the BS number 48, while the cooperative methods consider
only the positions where the CAV detect the BS number 48.

Fig. 13. Positioning performances in terms of CDF of the distance error
in the LOS testing trajectory. The solid and dotted lines are the 2D and 3D
errors, respectively.

Fig. 14. Positioning performances in terms of CDF of the location error
over the whole testing trajectory. The solid and dotted lines are the 2D and
3D errors, respectively.

Observing Fig. 15a, we notice that the Single-BS ToF-
AoA method has the worst performances since it locates
the CAV outside the road for most of the trajectory. This
is mainly due to AoA estimations, which become worst
the higher the distance from the BS, and ToF estimations.
In LOS positions, i.e., north part of the trajectory, the ToF
error is only due to the autocorrelation of SRSs and peak
estimation. On the contrary, in NLOS positions, i.e., south
part of the trajectory, the major source of error is represented
by reflections. The ego DL model improves this aspect by
halving the error (see Fig. 15b) especially in NLOS sections.
The Multi-BS TDoF struggles in high-speed conditions, i.e.,
east part of LOS trajectory, and in NLOS positions where the
number of cooperative BSs is limited or the range-biases are
severe, i.e., top-right corner of Fig. 15a. Finally, the proposed
cooperative DL model (green markers) achieves the higher
positioning accuracy in almost all conditions, combining
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Fig. 15. Positioning performance in a 5G urban scenario: (a) 3D testing trajectory and related estimate obtained by the positioning methods (represented by
different colors), with location errors represented as solid lines. (b) Bird-eye view of the testing and estimated trajectories.

cooperative LOS measurements with egocentric NLOS
predictions.

VII. CONCLUSION AND FUTURE WORKS

Given the paramount importance of providing enhanced
solutions for high-precision positioning in next 3GPP
Releases, in this paper, we propose a cooperative positioning
network architecture based on DL. Each BS composing the
localization infrastructure has the same proposed DL model
which solves the joint task of NLOS identification and posi-
tion estimation. Depending on the condition, LOS or NLOS,
the task is solved in cooperative or egocentric (ego) mode,
respectively. In order to cooperate, the architecture internally
exchanges only the compact latent feature representation of
the channel obtained with an AE structure, permitting to
combine the complete non-linear measurements and enhance
positioning accuracy.

The proposed cooperative architecture is suitable and
fully-compliant with 5G massive-MIMO OFDM systems,
where sparse space-time channel responses, i.e., ADCPM,
are adopted as input-images to the DL model. The ADCPM
embodies position-dependent features, such as ToF, AoA and
RSS of each propagation path, which can be automatically
extracted by the proposed DL model. With the use of Matlab
ray-tracing and SUMO software, we simulate a complex and
realistic C-ITS scenario where some CAVs create multiple
trajectories and communicate with a set of BSs, i.e., 3GPP
UMi scenario. Results show that the proposed cooperative
architecture is able to improve upon classical geometrical algo-
rithms, e.g., TDoF multi-lateration, both in LOS and NLOS
conditions, by increasing the accuracy of 47%. Moreover, the
cooperation overcomes the limitations of single-BS prediction
based on DL by automatically switching between egocentric
and cooperative mode.

ML, and more especially DL techniques, are foreseen to
have a huge impact on next-generation cellular networks.
This work is thereby a first attempt to implement a coopera-
tive high-precision positioning system towards that direction.
Further developments could be the integration of different

DL models into the architecture or the tracking of many
simultaneous targets with automatic data-association.

APPENDIX A
JOINT LOG-LIKELIHOOD

To prove (13), we start by rewriting the likelihood distribu-
tion (12) as:

p(ui, si|xi,W,CLOS,CNLOS) =

[p̂s,iNNN (ui; ûLOS,i(xi,W),CLOS)]
si×

[(1− p̂s,i)NNN (ui; ûNLOS,i(xi,W),CNLOS)]
(1−si). (16)

For simplicity of notation, we drop the dependencies on xi
and W. The negative log-likelihood of the overall batch of
samples, using (16) is:

Ltask = −
Nb∑

i=1

log
{
[p̂s,iNNN (ui; ûLOS,i,CLOS)]

si

× [(1− p̂s,i)NNN (ui; ûNLOS,i,CNLOS)]
(1−si)

}
(17)

=

Nb∑

i=1

{
si
[
−log(p̂s,i)− log(NNN (ui; ûLOS,i,CLOS))

]

+(1−si)
[
−log(1−p̂s,i)−log(NNN (ui;ûNLOS,i,CNLOS))

]}
.

(18)

Now we can explicitly compute the logarithm of the
multi-variate Gaussian distribution and obtain:

Ltask =

Nb∑

i=1

{
si ·
[
−log(p̂s,i) +

log(2π|CLOS|)
2

+
∥ui − ûLOS,i∥22

2σ2
LOS

]

+ (1− si) ·
[
−log(1− p̂s,i) +

log(2π|CNLOS|)
2

+
∥ui − ûNLOS,i∥22

2σ2
NLOS

]}
. (19)
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By discarding the terms that do not depend on ui or si,
we obtain:

Ltask ⋍
Nb∑

i=1

{
si ·
[
−log(p̂s,i) +

∥ui − ûLOS,i∥22
2σ2

LOS

]

+ (1− si) ·
[
−log(1− p̂s,i) +

∥ui − ûNLOS,i∥22
2σ2

NLOS

]}
,

(20)

concluding the derivation.

REFERENCES

[1] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and
G. Seco-Granados, “Survey of cellular mobile radio localization meth-
ods: From 1G to 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1124–1148, 2nd Quart., 2018. [Online]. Available: https://ieeexplore.
ieee.org/document/8226757/

[2] O. Kanhere and T. S. Rappaport, “Position location for futuristic cellular
communications: 5G and beyond,” IEEE Commun. Mag., vol. 59,
no. 1, pp. 70–75, Jan. 2021. [Online]. Available: https://ieeexplore.ieee.
org/document/9356512/

[3] A. Nessa, B. Adhikari, F. Hussain, and X. N. Fernando, “A survey
of machine learning for indoor positioning,” IEEE Access, vol. 8,
pp. 214945–214965, 2020. [Online]. Available: https://ieeexplore.ieee.
org/document/9264122/

[4] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson,
and H. Wymeersch, “Location-aware communications for 5G net-
works: How location information can improve scalability, latency,
and robustness of 5G,” IEEE Signal Process. Mag., vol. 31, no. 6,
pp. 102–112, Nov. 2014. [Online]. Available: https://ieeexplore.ieee.
org/document/6924849

[5] A. M. Nor, S. Halunga, and O. Fratu, “Survey on position-
ing information assisted mmWave beamforming training,” Ad Hoc
Netw., vol. 135, Oct. 2022, Art. no. 102947. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1570870522001287

[6] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and
D. J. Love, “Prospective multiple antenna technologies for beyond 5G,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/9113273/

[7] L. Yin, Q. Ni, and Z. Deng, “A GNSS/5G integrated positioning
methodology in D2D communication networks,” IEEE J. Sel. Areas
Commun., vol. 36, no. 2, pp. 351–362, Feb. 2018.

[8] F. Mogyorósi et al., “Positioning in 5G and 6G networks—A survey,”
Sensors, vol. 22, no. 13, p. 4757, Jun. 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/13/4757

[9] A. M. Nor and E. M. Mohamed, “Li-Fi positioning for efficient millime-
ter wave beamforming training in indoor environment,” Mobile Netw.
Appl., vol. 24, no. 2, pp. 517–531, Apr. 2019, doi: 10.1007/s11036-
018-1154-4.

[10] C. Morelli, M. Nicoli, V. Rampa, and U. Spagnolini, “Hidden Markov
models for radio localization in mixed LOS/NLOS conditions,” IEEE
Trans. Signal Process., vol. 55, no. 4, pp. 1525–1542, Apr. 2007.
[Online]. Available: http://ieeexplore.ieee.org/document/4133045/

[11] L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic, and M. Nicoli,
“UWB localization in a smart factory: Augmentation methods and
experimental assessment,” IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–18, 2021. [Online]. Available: https://ieeexplore.ieee.org/
document/9409138/

[12] F. Liu et al., “Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9737357/

[13] Q. Zhang, H. Sun, X. Gao, X. Wang, and Z. Feng, “Time-division
ISAC enabled connected automated vehicles cooperation algorithm
design and performance evaluation,” IEEE J. Sel. Areas Com-
mun., vol. 40, no. 7, pp. 2206–2218, Jul. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9728752/

[14] S. Shi, Z. Cheng, L. Wu, Z. He, and B. Shankar, “Distributed 5G NR-
based integrated sensing and communication systems: Frame structure
and performance analysis,” in Proc. 30th Eur. Signal Process. Conf.
(EUSIPCO), Belgrade, Serbia, Aug. 2022, pp. 1062–1066. [Online].
Available: https://ieeexplore.ieee.org/document/9909950/

[15] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: Wire-
less indoor localization with little human intervention,” in Proc. 18th
Annu. Int. Conf. Mobile Comput. Netw., Istanbul Turkey, Aug. 2012,
pp. 269–280, doi: 10.1145/2348543.2348578.

[16] M. M. Butt, A. Rao, and D. Yoon, “RF fingerprinting and deep learning
assisted UE positioning in 5G,” in Proc. IEEE 91st Veh. Technol. Conf.
(VTC-Spring), May 2020, pp. 1–7.

[17] J. Sangthong, J. Thongkam, and S. Promwong, “Indoor wireless
sensor network localization using RSSI based weighting algorithm
method,” in Proc. 6th Int. Conf. Eng., Appl. Sci. Technol., Chiang Mai,
Thailand, Jul. 2020, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.
org/document/9165300/

[18] Moderator’s Summary for Discussion [Ran93E-R18Prep-10] Expanded
and Improved Positioning, document TSG-RAN meeting (RP) 0.0.4,
Version 0.0.4, 3GPP, Sep. 2021. [Online]. Available: https://www.
3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_93e/Docs/

[19] A. Bourdoux et al., “6G white paper on localization and sensing,” 2020,
arXiv:2006.01779.

[20] T. Wild, V. Braun, and H. Viswanathan, “Joint design of com-
munication and sensing for beyond 5G and 6G systems,” IEEE
Access, vol. 9, pp. 30845–30857, 2021. [Online]. Available: https://
ieeexplore.ieee.org/document/9354629/

[21] S. Rezaie, E. de Carvalho, and C. N. Manchón, “A deep learning
approach to location- and orientation-aided 3D beam selection for
mmWave communications,” IEEE Trans. Wireless Commun., vol. 21,
no. 12, pp. 11110–11124, Dec. 2022. [Online]. Available: https://
ieeexplore.ieee.org/document/9832551/

[22] M. A. Arfaoui et al., “Invoking deep learning for joint estimation of
indoor LiFi user position and orientation,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 9, pp. 2890–2905, Sep. 2021.

[23] S. V. Balkus, H. Wang, B. D. Cornet, C. Mahabal, H. Ngo, and
H. Fang, “A survey of collaborative machine learning using 5G
vehicular communications,” IEEE Commun. Surveys Tuts., vol. 24,
no. 2, pp. 1280–1303, 2nd Quart., 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9706268/

[24] L. Barbieri, B. C. Tedeschini, M. Brambilla, and M. Nicoli, “Implicit
vehicle positioning with cooperative LiDAR sensing,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023, pp. 1–5.

[25] S. Bartoletti et al., “Positioning and sensing for vehicular safety
applications in 5G and beyond,” IEEE Commun. Mag., vol. 59,
no. 11, pp. 15–21, Nov. 2021. [Online]. Available: https://ieeexplore.
ieee.org/document/9665433/

[26] B. C. Tedeschini, M. Brambilla, L. Barbieri, and M. Nicoli, “Address-
ing data association by message passing over graph neural net-
works,” in Proc. 25th Int. Conf. Inf. Fusion (FUSION), Linkoping,
Sweden, Jul. 2022, pp. 1–7. [Online]. Available: https://ieeexplore.ieee.
org/document/9841233/

[27] P. Zhang, J. Lu, Y. Wang, and Q. Wang, “Cooperative localization
in 5G networks: A survey,” ICT Exp., vol. 3, no. 1, pp. 27–32,
Mar. 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405959517300346

[28] G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, and H. Wymeersch,
“Implicit cooperative positioning in vehicular networks,” IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 12, pp. 3964–3980, Dec. 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8307478/

[29] M. Brambilla, D. Pardo, and M. Nicoli, “Location-assisted subspace-
based beam alignment in LOS/NLOS mm-wave V2X communica-
tions,” in Proc. IEEE Int. Conf. Commun. (ICC), Dublin, Ireland,
Jun. 2020, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/
document/9148587/

[30] M. Brambilla, L. Combi, A. Matera, D. Tagliaferri, M. Nicoli, and
U. Spagnolini, “Sensor-aided V2X beam tracking for connected auto-
mated driving: Distributed architecture and processing algorithms,”
Sensors, vol. 20, no. 12, p. 3573, Jun. 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/12/3573

[31] B. C. Tedeschini, M. Nicoli, and M. Z. Win, “On the latent
space of mmWave MIMO channels for NLOS identification in 5G-
advanced systems,” IEEE J. Sel. Areas Commun., vol. 41, no. 6,
pp. 1655–1669, May 2023. [Online]. Available: https://ieeexplore.ieee.
org/document/10121016/

[32] S. Marano, W. M. Gifford, H. Wymeersch, and M. Z. Win,
“NLOS identification and mitigation for localization based on UWB
experimental data,” IEEE J. Sel. Areas Commun., vol. 28, no. 7,
pp. 1026–1035, Sep. 2010. [Online]. Available: http://ieeexplore.ieee.
org/document/5555901/

Chapter 8. Efficient Latent Features Combination for Static Positioning



3814 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 12, DECEMBER 2023

[33] H. Wymeersch, S. Marano, W. M. Gifford, and M. Z. Win, “A machine
learning approach to ranging error mitigation for UWB localization,”
IEEE Trans. Commun., vol. 60, no. 6, pp. 1719–1728, Jun. 2012.
[Online]. Available: http://ieeexplore.ieee.org/document/6192275/

[34] T. Van Nguyen, Y. Jeong, H. Shin, and M. Z. Win, “Machine learning
for wideband localization,” IEEE J. Sel. Areas Commun., vol. 33,
no. 7, pp. 1357–1380, Jul. 2015. [Online]. Available: http://ieeexplore.
ieee.org/document/7102989/

[35] E. Kurniawan, L. Zhiwei, and S. Sun, “Machine learning-based channel
classification and its application to IEEE 802.11ad communications,”
in Proc. IEEE Global Commun. Conf., Singapore, Dec. 2017, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/8254052/

[36] X. Yang, “NLOS mitigation for UWB localization based on sparse
pseudo-input Gaussian process,” IEEE Sensors J., vol. 18, no. 10,
pp. 4311–4316, May 2018. [Online]. Available: https://ieeexplore.ieee.
org/document/8322223/

[37] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proc. IEEE INFOCOM. Conf.
Comput. Commun., 19th Annu. Joint Conf. IEEE Comput. Commun.
Societies, Tel Aviv, Israel, Mar. 2000, pp. 775–784. [Online]. Available:
http://ieeexplore.ieee.org/document/832252/

[38] M. Youssef and A. Agrawala, “The Horus WLAN location determina-
tion system,” in Proc. 3rd Int. Conf. Mobile Syst., Appl., Jun. 2005,
pp. 205–218, doi: 10.1145/1067170.1067193.

[39] X. Wang, L. Gao, S. Mao, and S. Pandey, “DeepFi: Deep learning for
indoor fingerprinting using channel state information,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 1666–1671.

[40] Y. Chapre, A. Ignjatovic, A. Seneviratne, and S. Jha, “CSI-MIMO:
An efficient Wi-Fi fingerprinting using channel state information with
MIMO,” Pervas. Mobile Comput., vol. 23, pp. 89–103, Oct. 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1574119215001406

[41] X. Wang, L. Gao, and S. Mao, “PhaseFi: Phase fingerprinting for indoor
localization with a deep learning approach,” in Proc. IEEE Global Com-
mun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2014, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/7417517/

[42] S. Savazzi, S. Sigg, M. Nicoli, V. Rampa, S. Kianoush, and
U. Spagnolini, “Device-free radio vision for assisted living: Leveraging
wireless channel quality information for human sensing,” IEEE Signal
Process. Mag., vol. 33, no. 2, pp. 45–58, Mar. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7426567/

[43] H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi: Convolutional
neural networks based indoor Wi-Fi localization using channel state
information,” IEEE Access, vol. 5, pp. 18066–18074, 2017. [Online].
Available: http://ieeexplore.ieee.org/document/8027020/

[44] X. Wang, X. Wang, and S. Mao, “ResLoc: Deep residual shar-
ing learning for indoor localization with CSI tensors,” in Proc.
IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.
(PIMRC), Montreal, QC, USA, Oct. 2017, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/8292236/

[45] X. Wang, X. Wang, and S. Mao, “CiFi: Deep convolutional neural
networks for indoor localization with 5 GHz Wi-Fi,” in Proc. IEEE
Int. Conf. Commun. (ICC), Paris, France, May 2017, pp. 1–6. [Online].
Available: http://ieeexplore.ieee.org/document/7997235/

[46] Y. Jing, J. Hao, and P. Li, “Learning spatiotemporal features of CSI for
indoor localization with dual-stream 3D convolutional neural networks,”
IEEE Access, vol. 7, pp. 147571–147585, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8864050/

[47] M. Malmstrom, I. Skog, S. M. Razavi, Y. Zhao, and F. Gunnarsson,
“5G positioning—A machine learning approach,” in Proc. 16th Work-
shop Positioning, Navigat. Commun. (WPNC), Bremen, Germany,
Oct. 2019, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/
document/8970186/

[48] J. Gante, G. Falcão, and L. Sousa, “Deep learning architectures for
accurate millimeter wave positioning in 5G,” Neural Process. Lett.,
vol. 51, no. 1, pp. 487–514, Feb. 2020, doi: 10.1007/s11063-019-
10073-1.

[49] Y. Li, S. Mazuelas, and Y. Shen, “Deep generative model for
simultaneous range error mitigation and environment identification,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Madrid,
Spain, Dec. 2021, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.
org/document/9685255/

[50] M. Stahlke, S. Kram, F. Ott, T. Feigl, and C. Mutschler, “Esti-
mating TOA reliability with variational autoencoders,” IEEE Sensors
J., vol. 22, no. 6, pp. 5133–5140, Mar. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9503384/

[51] N. Lv, F. Wen, Y. Chen, and Z. Wang, “A deep learning-based end-
to-end algorithm for 5G positioning,” IEEE Sensors Lett., vol. 6,
no. 4, pp. 1–4, Apr. 2022. [Online]. Available: https://ieeexplore.ieee.
org/document/9706343/

[52] K. Gao, H. Wang, H. Lv, and W. Liu, “Toward 5G NR high-
precision indoor positioning via channel frequency response: A new
paradigm and dataset generation method,” IEEE J. Sel. Areas Com-
mun., vol. 40, no. 7, pp. 2233–2247, Jul. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9729785/

[53] C. Wu et al., “Learning to localize: A 3D CNN approach to user
positioning in massive MIMO-OFDM systems,” IEEE Trans. Wireless
Commun., vol. 20, no. 7, pp. 4556–4570, Jul. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9364875/

[54] B. El Boudani et al., “Implementing deep learning techniques in 5G
IoT networks for 3D indoor positioning: DELTA (deep learning-based
co-operative architecture),” Sensors, vol. 20, no. 19, p. 5495, Sep. 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/19/5495

[55] H. Kim, S. H. Lee, and S. Kim, “Cooperative localization with dis-
tributed ADMM over 5G-based VANETs,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8377454/

[56] L. Barbieri, S. Savazzi, M. Brambilla, and M. Nicoli, “Decentralized
federated learning for extended sensing in 6G connected vehicles,”
Veh. Commun., vol. 33, Jan. 2022, Art. no. 100396. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2214209621000656

[57] Study on NR Positioning Support, document (TR) 38.855, Version
16.0.0, 3GPP, Sep. 2019. [Online]. Available: https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId
=3501

[58] P. Alvarez Lopez et al., “Microscopic traffic simulation using SUMO,”
in Proc. 21st Int. Conf. Intell. Transp. Syst., Nov. 2018, pp. 2575–2582.
[Online]. Available: https://elib.dlr.de/124092/

[59] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[60] H. L. Van Trees, Detection, Estimation, and Modulation Theory. 4:
Optimum Array Processing. New York, NY, USA: Wiley, 2002.

[61] X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based
on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6134–6145, Jul. 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8307353/

[62] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Computer Vision—ECCV (Lecture Notes in
Computer Science), D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds. Cham, Switzerland: Springer, 2014, pp. 818–833.

[63] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608014002135

[64] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 4,
no. 4. Berlin, Germany: Springer, Aug. 2006. [Online]. Available:
https://link.springer.com/book/9780387310732

[65] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton,
“Adaptive mixtures of local experts,” Neural Comput., vol. 3,
no. 1, pp. 79–87, Mar. 1991. [Online]. Available: http://ieeexplore.ieee.
org/document/6797059/

[66] Study on Channel Model for Frequencies From 0.5 to 100 GHz
(Rel-16), document TR 38.901, Version 16.1.0, 3GPP, Nov. 2020.
[Online]. Available: https://www.etsi.org/deliver/etsi_tr/138900_138999/
138901/16.01.00_60/tr_138901v160100p.pdf

[67] C.-F. Yang and C.-J. Ko, “A ray tracing method for modeling indoor
wave propagation and penetration,” in Proc. IEEE Antennas Propag.
Soc. Int. Symp., Baltimore, MD, USA, Jul. 1996, pp. 441–444. [Online].
Available: http://ieeexplore.ieee.org/document/549632/

[68] H.-J. Li, C.-C. Chen, T.-Y. Liu, and H.-C. Lin, “Applicability of ray-
tracing technique for the prediction of outdoor channel characteristics,”
IEEE Trans. Veh. Technol., vol. 49, no. 6, pp. 2336–2349, Nov. 2000.
[Online]. Available: http://ieeexplore.ieee.org/document/901902/

[69] A.-Y. Hsiao, C.-F. Yang, T.-S. Wang, I. Lin, and W.-J. Liao, “Ray tracing
simulations for millimeter wave propagation in 5G wireless communi-
cations,” in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat.
Radio Sci. Meeting, San Diego, CA, USA, Jul. 2017, pp. 1901–1902.
[Online]. Available: http://ieeexplore.ieee.org/document/8072993/

[70] Z. Yun and M. F. Iskander, “Ray tracing for radio propagation modeling:
Principles and applications,” IEEE Access, vol. 3, pp. 1089–1100, 2015.
[Online]. Available: http://ieeexplore.ieee.org/document/7152831/

Chapter 8. Efficient Latent Features Combination for Static Positioning



CAMAJORI TEDESCHINI AND NICOLI: COOPERATIVE DL POSITIONING IN mmWAVE 5G-ADVANCED NETWORKS 3815

[71] Guidelines for Evaluation of Radio Interface Technologies for IMT-
2020, document SG05 ContribuQon 57, International Telecommuni-
cation Union (ITU)-R M, 2017. [Online]. Available: https://www.itu.
int/md/R15-SG05-C-0057

[72] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
NIPS, Oct. 2017, pp. 1–4. [Online]. Available: https://openreview.
net/forum?id=BJJsrmfCZ

[73] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[74] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder–decoder architecture for image segmenta-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12,
pp. 2481–2495, Dec. 2017. [Online]. Available: http://ieeexplore.ieee.
org/document/7803544/

[75] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

[76] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986. [Online]. Available: http://ieeexplore.ieee.org/document/
1143830/

[77] F.-G. Yan, J. Wang, S. Liu, Y. Shen, and M. Jin, “Reduced-complexity
direction of arrival estimation using real-valued computation with
arbitrary array configurations,” Int. J. Antennas Propag., vol. 2018,
pp. 1–10, Apr. 2018. [Online]. Available: https://www.hindawi.com/
journals/ijap/2018/3284619/

[78] Study on Enhancement of 3GPP Support for 5G V2X Services, docu-
ment (TR) 22.886, Version 16.2.0, 3GPP, Dec. 2018. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/Specification
Details.aspx?specificationId=3108

Bernardo Camajori Tedeschini (Graduate Stu-
dent Member, IEEE) received the B.Sc. (Hons.) in
Computer Science and M.Sc. (Hons.) degrees in
Telecommunications Engineering from the Politec-
nico di Milano, Italy, in 2019 and 2021, respectively.
From November 2021 he started as PhD fel-
low in Information Technology at Dipartimento di
Eleeronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano. He is currently a visiting
researcher with the Laboratory for Information &
Decision Systems at the Massachusees Institute of

Technology (MIT), Cambridge, MA.
His research interests include federated learning, machine learning and

localization methods. He was a recipient of the Ph.D. grant from the ministry
of the Italian government Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) and the Roberto Rocca Doctoral Fellowship granted by MIT
and Politecnico di Milano.

Monica Nicoli (Senior Member, IEEE) received the
M.Sc. (Hons.) and Ph.D. degrees in communica-
tion engineering from Politecnico di Milano, Milan,
Italy, in 1998 and 2002, respectively. She was a
Visiting Researcher with ENI Agip, from 1998 to
1999, and Uppsala University, in 2001. In 2002, she
joined Politecnico di Milano as a Faculty Member.
She is currently an Associate Professor in telecom-
munications with the Department of Management,
Economics and Industrial Engineering.

Her research interests include signal processing,
machine learning, and wireless communications, with emphasis on smart
mobility and Internet of Things (IoT). She was a recipient of the Marisa
Bellisario Award, in 1999, and a co-recipient of the best paper awards of the
EuMA Mediterranean Microwave Symposium, in 2022, the IEEE Symposium
on Joint Communications and Sensing, in 2021, the IEEE Statistical Signal
Processing Workshop, in 2018, and the IET Intelligent Transport Systems
journal, in 2014. She is an Associate Editor of the IEEE TRANSACTIONS
ON INTELLIGENT TRANSPORTATION SYSTEMS. She has also served as an
Associate Editor for the EURASIP Journal on Wireless Communications and
Networking, from 2010 to 2017, and a Lead Guest Editor for the Special Issue
on Localization in Mobile Wireless and Sensor Networks, in 2011.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

Chapter 8. Efficient Latent Features Combination for Static Positioning



9

C
H

A
P

T
E

R

Efficient Uncertainty Quantification
for Mobile Positioning

In this chapter, we tackle the task of UE tracking in urban environments with next-
generation cellular networks. Given the presence of high-blockage conditions, the main
challenge is how to estimate in real-time the reliability of DL model predictions. In the
paper, we propose two complementary contributions to this challenge. First, we propose
the integration of BNN into tracking filters by exploiting the predicted uncertainty as
likelihood measure, which permits the coherent combination of multiple BSs’ position
estimates. Second, we introduce a novel BNN algorithm, namely BBK, which exploits
the teacher-student paradigm to perform uncertainty quantification without the need of
performing sampling procedures at inference phase. Moreover, BBK, as opposed to
state-of-the-art real-time BNN methods, is able to fully evaluate the output’s uncertainty
by distinguishing between aleatoric and epistemic uncertainties. This enables insights
behind the uncertainty prediction and can guide for more efficient sample gathering.
We test the proposed BBK method with an AE-based DL model which predicts the UE
position from ADCPM samples. The results indicate that the BBK approach can accu-
rately estimate both aleatoric and epistemic uncertainties, surpassing the performances
of current real-time BNN methods, particularly in OoD scenarios. In terms of mobile
positioning, the proposed cooperative tracking method outperforms traditional geometric
tracking filters, as well as RNN models thanks to the coherent fusion of multiple BSs
predictions.
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Abstract— In the evolving landscape of 5G new radio
and related 6G evolution, achieving centimeter-level dynamic
positioning is pivotal, especially in cooperative intelligent trans-
portation system frameworks. With the challenges posed by
higher path loss and blockages in the new frequency bands
(i.e., millimeter waves), machine learning (ML) offers new
approaches to draw location information from space-time wide-
bandwidth radio signals and enable enhanced location-based
services. This paper presents an approach to real-time 6G
location tracking in urban settings with frequent signal blockages.
We introduce a novel teacher-student Bayesian neural network
(BNN) method, called Bayesian bright knowledge (BBK), that
predicts both the location estimate and the associated uncertainty
in real-time. Moreover, we propose a seamless integration of
BNNs into a cellular multi-base station tracking system, where
more complex channel measurements are taken into account.
Our method employs a deep learning (DL)-based autoencoder
structure that leverages the complete channel impulse response
to deduce location-specific attributes in both line-of-sight and
non-line-of-sight environments. Testing in 3GPP specification-
compliant urban micro (UMi) scenario with ray-tracing and
traffic simulations confirms the BBK’s superiority in estimating
uncertainties and handling out-of-distribution testing positions.
In dynamic conditions, our BNN-based tracking system surpasses
geometric-based tracking techniques and state-of-the-art DL
models, localizing a moving target with a median error of 46 cm.
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I. INTRODUCTION

POSITIONING and tracking capabilities have become
increasingly crucial in the evolution of cellular networks,

as they provide benefits to the 5th generation (5G) use
cases [1], [2], [3]. Since the adoption of 3rd Generation
Partnership Project (3GPP) Release 15 in 2018, these net-
works have not only achieved rapid development [4], [5],
[6], but have also expanded to introduce new use cases and
services [7]. Notably in 3GPP Releases 16 and 17, location
awareness systems have been extended beyond from regulatory
applications to commercial and roaming functionalities [8],
[9], [10]. Still, the major leap forward in positioning perfor-
mances is expected with the advent of 5G Advanced in 3GPP
Release 18 [11], [12], [13], [14], where the primary goal of
centimeter-level absolute accuracy will be achieved thanks to
transformative key features enablers, i.e., massive multiple-
input multiple-output (mMIMO) [15], larger bandwidths and
millimeter waves (mmWave) [16]. The main challenges are
the higher path loss and frequent blockages, which limit
the potential of conventional and global navigation satellite
systems (GNSS)-based solutions. Indeed, under the absence of
line-of-sight (LOS) link, GNSS becomes challenging to utilize
effectively, even with advanced satellite techniques such as
real-time kinematic (RTK) [17].

Extensive research in the domain of localization and naviga-
tion has explored various aspects of these challenges, focusing
on fundamental limits [18], [19], [20], [21], network operation
and experimentation [22], [23], [24], [25], and algorithm
design [26], [27], [28], [29]. To solve these challenges, 5G
Advanced has pushed interest in leveraging artificial intelli-
gence (AI) and machine learning (ML) for assisted or even
direct positioning [30]. Indeed, base stations (BSs) often have
access to a large number of historical channel state information
(CSI) [31], [32], [33], which can be exploited through deep
learning (DL) methods (e.g., autoencoder (AE) structures [34])
as location fingerprints [35]. The advantages of direct artificial
intelligence (AI)/machine learning (ML) positioning are the
ability to perform both LOS and non-LOS (NLOS) posi-
tioning, and single-BS localization, enabled by integrated
sensing and communication (ISAC) frameworks [36], [37],
[38]. Therefore, we foresee these solutions as a promising
long-term answer to advanced positioning methods.

Despite the potential of ML in positioning applications,
traditional ML approaches have limitations, especially con-
cerning uncertainty quantification. In critical applications, such
as tracking of connected automated vehicles (CAVs) [39],

0733-8716 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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[40], [41], lack of uncertainty quantification can be a major
limiting or even blocking factor as integrity and reliability
requirements are very stringent. From this point of view,
Bayesian neural networks (BNNs) offer a promising solution
to these challenges [42], as they not only provide point
estimates but also quantify the uncertainty associated with
these estimates [43], allowing for more reliable and robust
positioning. In particular, in static positioning, BNNs are more
resilient to overfitting during training with respect to neural
networks (NNs), they can incorporate prior knowledge on the
problem at hand and, more importantly, are able to characterize
the uncertainty of the model (i.e., whether it is due to the
lack of training samples or to the intrinsic characteristics of
the data). Furthermore, in dynamic settings, i.e., tracking, the
uncertainty can be cleverly combined in Bayesian tracking
solutions.

While BNNs address key limitations of conventional ML
algorithms, they also present specific challenges. A main draw-
back is the need for sampling during inference time, which
may not be suitable for real-time applications [44]. Another
issue is the computational and storage overhead of maintaining
multiple NN configurations for Bayesian inference. Given the
lack of a complete solution to these problems and the great
potential of BNNs in cellular tracking systems, in this paper,
we explore and propose the integration of real-time BNN
solutions into future 6G systems. These advancements aim
to bring together the best of both worlds: the robustness and
uncertainty quantification of BNNs along with the speed and
efficiency required for next-generation tracking systems.

The rest of this paper is structured as follows. Sec. II
presents the related works including next-generation cellu-
lar positioning, ML for static and mobile positioning, and
BNNs for real-time inference, along with the paper’s main
contributions. Sec. III describes the channel model and the
channel fingerprint used for positioning. In Sec. IV, we discuss
the proposed real-time BNN method and its application to
a DL model with AE structure. Sec. V presents the inte-
gration of BNN methods in next-generation cellular tracking
systems. Sec. VI presents a case study, and Sec. VII draws the
conclusions.

II. RELATED WORKS AND CONTRIBUTIONS

A. Next Generation Cellular Positioning

3GPP Release 18 is expected to significantly enhance the
existing positioning standards by introducing key methodolo-
gies. It introduces the support of carrier phase positioning
(CPP), a GNSS-based technology known for its centimeter-
level precision, though it is traditionally limited to outdoor
use where GNSS signals are not blocked [45]. Moreover,
Release 18 is set to fulfill low power high accuracy positioning
(LPHAP) standards and introduce positioning features for
reduced capability (RedCap) user equipments (UEs), such
as wearable medical devices, and augmented reality goggles.
Finally, it comprises studies on sidelink (SL) positioning, e.g.,
the design of SL-positioning reference signal (PRS) [46].

However, in case of non-cooperative and non-RedCap UEs
moving in frequent blockage environment, e.g., CAVs in urban
scenario, geometric-based positioning methodologies struggle
in fulfilling the requirements. For this reason, AI-based solu-
tions have been studied, particularly regarding complexity,
positioning performances, and generalizations [11].

B. ML for Static Positioning

Significant works on ML-based wireless positioning were
developed with the introduction of MIMO-orthogonal fre-
quency division multiplexing (OFDM) systems in the IEEE
802.11a/n protocol, which enabled the extraction of CSI
from commercial Wi-Fi devices. The availability of channel
information across multiple carriers and antennas allowed
for detailed insights into radio signal propagation, enabling
learning of the user’s position [47], [48]. DL techniques were
utilized to learn the best non-linear combination of features
for tasks like NLOS classification or position estimation, with
many studies adopting convolutional neural networks (CNNs)
for feature extraction [49], [50], [51], [52].

Regarding 5G positioning, gathering the knowledge of Wi-
Fi works, two main components started to delineate: the
usage of full channel impulse response (CIR) data as input
features for positioning and the adoption of AE NN structures.
Leveraging full CIR data, especially when organized into
image-like structures, is gaining a lot of momentum. Authors
in [31] adopted the channel frequency response (CFR) matrix
obtained both from ray-tracing simulations and real exper-
iments. However, while being effective for positioning, the
CFR does not distinctly represent the angle of arrival (AOA)
or time of flight (TOF) for each path, potentially complicating
feature extraction. A different study employed a 3D angle-
delay channel power matrix (ADCPM) and a CNN with
inception modules to predict UE position [53], but with double
the inference time and four times the computational storage
compared to 2D ADCPM. Dealing with image structure per-
mits employing more complex DL models which compress the
channel into a compact and efficient representation, namely
AE.

C. ML for Mobile Positioning and Tracking

UE tracking by ML-based methods in the context of 5G
networks is a relatively unexplored area since the majority of
previous works employed conventional Bayesian techniques,
e.g., extended Kalman filter (EKF) [54] or message pass-
ing algorithm (MPA) [55], in conjunction with mmWave
and MIMO enablers. Authors in [56] adopted state-of-the-
art temporal convolutional network (TCN) models to perform
NLOS outdoor tracking, reaching a mean absolute error
(MAE) of 1.8 m. A similar work has been carried out in
indoor conditions [57], with long short-term memory (LSTM)
and CNN applied to raw CSI fingerprinting. However, LSTMs
and TCNs have two main drawbacks. First, they require a
set of training trajectories with highly accurate ground truth
positions. While this is practical for static positioning, for
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dynamic positioning, especially in outdoor conditions, it is dif-
ficult to obtain the ground truth target position while moving,
unless using high-precision optical laser positioning systems.
Second, the conventional LSTMs and TCNs do not provide
an uncertainty measure of their predictions, thus limiting the
deployment in safety-critical applications.

D. BNN for Real-Time Inference

In the context of DL-based uncertainty estimation, it is
essential to distinguish between aleatoric and epistemic uncer-
tainties [58]. These two types of uncertainties are the roots
behind the prediction uncertainty and they are generated by
two different phenomena. Aleatoric uncertainty refers to the
dispersion of the predicted distribution of our target vari-
able, e.g., UE location, based on the given features, which
arises from measurement inaccuracies. Therefore, aleatoric
uncertainty remains unchanged even with additional data col-
lection under identical experimental conditions. This specific
uncertainty, referred to as data uncertainty, can be made
data-dependent and learned as an additional output from
conventional NNs [59]. Thus, these solutions are impor-
tant for real-time applications, where no Monte Carlo (MC)
sampling procedures are required, but fail to generalize
in out-of-distribution (OOD) scenarios with sparse training
data.

For this reason, BNNs and epistemic uncertainty evalua-
tion have been studied [60]. The epistemic uncertainty, also
known as model uncertainty, derives from the uncertainty over
the BNN model parameters, which are considered random
variables. Contrary to the aleatoric uncertainty, the ambiguity
on the model parameters, and thus on the output, can be
explained away by providing more training samples. Existing
BNN methods, both exact methods like Markov chain Monte
Carlo (MCMC) [61], [62] and approximations like variational
inference (VI) [63], [64], [65], [66], [67], aim at effectively
sampling from the posterior distribution of the weights and
predicting the posterior predictive distribution over the output.
This is done by having multiple NN parameters instances and
by predicting multiple times the same input sample.

Many works tried to tackle the problem of simultaneous
learning of aleatoric and epistemic uncertainties. The authors
in [59] adopted a BNN derived from Monte Carlo Dropout
(MCDropout) method which also predicted the aleatoric
uncertainty of data through a specific loss function. Despite
achieving good results, this method still relies on a sampling
inference procedure, thus not being suitable for real-time appli-
cations. A solution to this issue can be found in the so-called
teacher-student techniques, such as Bayesian dark knowledge
(BDK) [68], where a student NN, i.e., non-Bayesian, is trained
to mimic the output of a teacher BNN, which is on the other
hand Bayesian thus learning both the points estimates and the
output uncertainties. During the inference phase, the real-time
uncertainty estimation is performed by the student NN without
requiring time-consuming sampling procedures. The primary
challenge in teacher-student methods is the student’s inability
to differentiate between the two distinct uncertainties in output.
Distinguishing between these uncertainties is crucial, as it
provides insights into the reasons for a model’s uncertainty

TABLE I
COMPARISON OF METHODS FOR REAL-TIME, ALEATORIC

AND EPISTEMIC PREDICTION CAPABILITIES

regarding a specific test sample, such as insufficient training
data points or inherent data noise. Moreover, recognizing these
uncertainties can guide where additional training points would
be most beneficial (i.e., wherever high epistemic uncertainty
and low aleatoric uncertainty are present). At the present day
and to the authors’ knowledge, no real-time solution to both
aleatoric and epistemic uncertainty learning is present in the
literature (see Table I), in particular regarding safety-critical
applications such as automated driving.

E. Contributions

In this paper, we address the problem of UE tracking in
next-generation networks through the usage of the full CIR and
DL-based predictions, whose output uncertainty is obtained
through real-time BNN techniques and seamlessly integrated
into existing tracking systems. The real-time BNN method-
ology, namely Bayesian bright knowledge (BBK), is built
with a teacher-student paradigm as it is the only methodology
of BNN which does not require sampling for producing the
uncertainty estimation. The localization system is based on
a NN trained on offline gathered data, which are limited by
spatial density. To account for both the aleatoric and epistemic
uncertainties caused by noisy measurements and limited den-
sity of the training points, respectively, we propose a Bayesian
tracking approach based on a BNN. This BNN constructs the
model that links measurements and positions, optimally pre-
dicting and weighing uncertainties in the position calculation.

The main contributions of this paper are summarized in the
following.

• We design a teacher-student BNN method, i.e., BBK,
that predicts both epistemic and aleatoric uncertainties
without requiring a sampling procedure during inference
phase. This makes it suitable for real-time and safety-
critical use cases.

• We propose the integration of BNNs in cellular tracking
systems where a set of cooperative BSs aims at tracking
a moving target. The integrated system is easy to be
implemented and is compatible with any BNN method.

• We develop a DL model based on an AE structure
which exploits the complete CIR, i.e., sparse ADCPM
matrices, to extract location-specific features and perform
positioning in both LOS and NLOS settings.

• We model a realistic cooperative intelligent transportation
system (C-ITS) setting in an urban context. Our simulated
network aligns with the 5G standard [69] and offers
realistic outdoor conditions using Wireless InSite 3D ray-
tracing software and MATLAB software. We emulate
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various vehicle trajectories, or UEs, designed with the
simulation of urban mobility (SUMO) software [70].

1) Notation: A random variable and its realization are
denoted by x and x; a random vector and its realization are
denoted by x and x; a random matrix and its realization
are denoted by X and X , respectively. The function px(x),
and simply p(x) when there is no ambiguity, denotes the
probability density function (PDF) of x. j =

√
−1 denotes

the imaginary unit. The notations X⊤, X∗ and XH indicate the
matrix transposition, conjugation and conjugate transposition.
det(·) and Tr(·) denote the determinant and the trace of the
matrix argument, respectively. The Kronecker and Hadamard
products between two matrices are denoted with ⊗ and ⊙,
respectively. With the notation x ∼ N (µ, σ2) we indicate
a Gaussian random variable x with mean µ and standard
deviation σ, whose PDF is denoted by N (x;µ, σ2). With the
notation y ∼ U(a, b) we indicate a uniform random variable
y with support [a, b]. We use E{·} and V{·} to denote the
expectation and the variance of random variable, respectively.
R and C stand for the set of real and complex numbers,
respectively. ⌊x⌋ indicates the largest integer not greater than
x. |x| denotes the length of the vector x. δ(·) is the Kronecker
delta function.

III. SYSTEM MODEL

A. Channel Model

Consider a mmWave OFDM system where a UE commu-
nicates with a BS in uplink direction at carrier wavelength
λc. The BS is equipped with a uniform planar array (UPA)
composed of Nv×Nh isotropic antenna elements (i.e., Nv and
Nh elements in the vertical and horizontal directions with the
antenna spacings of dv and dh, respectively). On the contrary,
the UE holds a single omni-directional antenna. The channel
between the BS and the UE (see Fig. 1) is composed of Np

distinct paths, each with a TOF τp, a zenith AOA θp ∈ [0, π],
and an azimuth AOA φp ∈ [0, π], for path p = 1, 2, . . . , Np.

We employ an OFDM scheme with a sampling interval of
Ts, Nc sub-carriers, and a symbol duration given by Tc =
NcTs. For the k-th sub-carrier, the frequency is fk = k

Tc
,

k = 0, 1, . . . , Nc−1. We assume that the cyclic-prefix duration
Tg = NgTs surpasses the maximum channel delay, denoted by
τMAX. Here, Ng represents the number of sampling intervals
constituting a guard interval.

Assuming a sampling rate of 1/Ts and treating each path as
independent and wide-sense stationary [71], the CFR for the
k-th sub-carrier can be expressed as [72], [73]

hk =

Np∑

p=1

ᾱp,k e(θp,φp) ∈ CNhNv (1)

where ᾱp,k = αpe−j2πτpfk is the channel gain in the fre-
quency domain, αp = ape

−j2π( dp
λc

−νpτp) is the complex path
gain of which includes the Doppler frequency shift νp and
has average power σ2

p = E
{
∥ap∥2

}
and dp = c τp is the

traveled distance (where c is the speed of light in air), and
e(θp,φp) ∈ CNhNv×1 is the array response vector [71].
Finally, by considering the different CFRs at every sub-carrier,

Fig. 1. An uplink scenario with a UE transmitting to a BS where the direction
of arrival (DOA) of the p-th path is highlighted with zenith θp and azimuth
φp angles.

we get the space-frequency channel response matrix (SFCRM)
as:

H = [h0 h1 · · · hNc−1] ∈ CNhNv×Nc . (2)

In the next subsection, we show how to extract the ADCPM
fingerprint from (2) obtained at the BS.

B. Location-Dependent Fingerprint
For location estimation, it is advantageous to map the chan-

nel response into the angle-delay domain. This transformation
simplifies the identification of macro-paths, i.e., clusters for
both LOS and NLOS components, which vary with the
environmental context, serving as location-specific features or
fingerprints. To obtain angle-delay domain features, we convert
the SFCRM as defined in (2) by employing phase-shifted
discrete Fourier transform (DFT) matrices VNh

∈ CNh×Nh

and VNv ∈ CNv×Nv , where [VNh
]̄i,j̄ = 1√

Nh
e
−j2π

ī

(
j̄−Nh

2

)
Nh

and [VNv
]̄i,j̄ =

1√
Nv
e−j2π

ī

(
j̄−Nv

2

)
Nv . Moreover, we denote with

F ∈ CNc×Ng the matrix formed by the first Ng columns of Nc

dimensional unitary DFT matrix where [F ]̄i,j̄ =
1√
Nc
e−j2π

īj̄
Nc .

The angle-delay channel response matrix (ADCRM) can be
then computed as [53]

G =
1√

NhNvNc
(V H

Nh
⊗ V H

Nv
)HF ∗ ∈ CNhNv×Ng (3)

where V H
Nh
⊗V H

Nv
and F ∗ project the SFCRM into the angle

and delay domains, respectively.
From (3), we can obtain the ADCPM as

P = E{G⊙ G∗} ∈ RNhNv×Ng (4)

where [P ]̄i,j̄ = E
{∥∥[G]̄i,j̄

∥∥2}. An important property of the
ADCPM is that for Nv, Nh and Ng → ∞, the ADCPM
becomes a sparse matrix whose elements [P ]̄i,j̄ match the
average channel power of the ī-th AOA and the j̄-th TOF
as [53]

lim
Nh,Nv,Ng→∞

[P ]̄i,j̄ =

Np∑

p=1

σ2
p δ
(̄
i−mpNv − np

)
δ
(
j̄ − rp

)

(5)
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where rp = ⌊ τpTs
⌋ is the resolvable delay corresponding

to the p-th path, np = Nv

2 + Nvdv
λc

cos θp and mp =
Nh

2 + Nhdh
λc

sin θp cosϕp. Hence, the statistical properties of
the ADCPM facilitate the DL model’s ability to capture
location-specific attributes, providing consistent and reliable
fingerprints for location estimation.

C. DL Model Input

We propose using the ADCPM in (4) as the measurement
basis for estimating the UE location. This sparse matrix
effectively serves as a visual snapshot of the multipath envi-
ronment in the power-angle-delay domain, from which a DL
model like a CNN can glean key location-centric features.
In addition, the ADCPM encapsulates all essential informa-
tion, i.e., TOF, AOA, and received signal strength (RSS)
for each path, while maintaining low storage and computa-
tional requirements due to channel sparsity. To illustrate this
aspect, in Fig. 2(b) we show an example ADCPM denoted
by P , comprising Ng = 352 delay samples and NhNv =
64 angular directions. Notably, even without an extensive array
of antennas or high sample resolution, the sparsity of the
matrix is evident. Therefore, in the experiment, we employ
the ADCPM P as the DL model’s input x for performing
tracking.

Despite the ability of the ADCPM to provide consistent and
reliable fingerprints for location estimation, we need to face
the practical challenges of noisy measurements, i.e., the non-
perfect matching between the input ADCPM and the related
position due to multipath fading and channel estimate errors,
and the limited spatial density of training points. In particular,
these two challenges create two types of uncertainties, namely,
aleatoric and epistemic uncertainties, respectively, which we
propose to assess through the usage of BNN. Therefore,
in Sec. IV, we detail how to train a BNN to obtain both the
position and its related uncertainties.

IV. REAL-TIME BNN METHODOLOGY

A. Problem Formulation

We consider a supervised regression setting where the UE’s
position is defined by the target variable t, which is considered
as a scalar here to simplify the derivation and modeled as

t = f(x) + ε(x) (6)

where f(x) is a non-linear function which takes as input
x (e.g., a channel measurement as the ADCPM) and
ε(x) ∼ N

(
0, σε(x)

2) is a random noise. Extension to a
vector target variable (i.e., 3D position) is in Sec. IV-E.
The objective is to approximate the function f(x) to
y(x, θ) using a NN with parameters θ. The vector θ is
learned using N training points composing a training dataset
D = {(tn,xn) | tn ∈ Dt,xn ∈ Dx}Nn=1, where Dt and Dx
contain the training targets and inputs, respectively. From the
training dataset, we define the likelihood function as:

pDt|Dx,θ(Dt|Dx,θ) =
N∏

n=1

N
(
tn; y(xn,θ), σε(xn)

2) (7)

assuming independence between target variables.

In non-Bayesian ML settings, a discriminative
probabilistic approach is adopted [74], where θ are
obtained via maximum likelihood estimation (MLE)
and by directly defining the posterior conditional
probability as pt|x,D(t|x,D) = pt|x,θ(t|x,θMLE), where
θMLE = argminθ{− log p(Dt|Dx,θ)} are obtained with
gradient descent optimization methods. Usually, the negative
log-likelihood − log p(Dt|Dx,θ) is called loss or error
function. On the contrary, in Bayesian settings, the network is
stochastic and is described by random parameters with prior
distribution pθ(θ) accounting for the uncertainty of the model
due to the finite size of the training dataset. In Bayesian
NNs, a generative approach is employed by computing the
so-called posterior predictive distribution [43]:

pt|x,D(t|x,D) =
∫
pt|x,θ(t|x,θ) pθ|D(θ|D)dθ (8)

where pθ|D(θ|D) is the posterior distribution. It is called
predictive as it is used to make predictions on new, unseen
data, and to differentiate it with respect to the posterior
distribution over the model parameters. However, in practice,
the posterior pθ|D(θ|D) is highly dimensional and non-
convex, leading to computational intractability. Thus, the
majority of BNN methods approximate pθ|D(θ|D) with a
sampling procedure and estimate the (8) with MC sampling
as

pt|x,D(t|x,D) ⋍
1

L

L∑

ℓ=1

p(t|x,θℓ) (9)

where L is the number of samples θℓ drawn from pθ|D(θ|D).

B. Predictive Mean and Variance Estimation

Given the posterior predictive distribution in (9), we can
obtain the predictive mean of t as

E{t|x,D} ⋍ 1

L

L∑

ℓ=1

∫
t p(t|x,θℓ)dt ⋍

1

L

L∑

ℓ=1

y(x,θℓ) . (10)

For the estimation of the variance, i.e., uncertainty of the
prediction of x, we need to distinguish between two types
of uncertainties, the aleatoric and the epistemic uncertain-
ties. The former derives from the generation of data in (6).
Since all the training points in D contain a realization of
the noise ε(x), this uncertainty is intrinsic within the data
and it cannot be reduced by providing more training sam-
ples. Still, since it is data-dependent, it can be learned by
the NN through a specific loss function with the model
σε(x)

2
= yal(x, θ) + ξal [59], where yal(x,θ) is an additional

NN output which predicts the aleatoric uncertainty of x, and
ξal ∼ N (0, σξal

2).
On the contrary, the epistemic uncertainty derives from

the uncertainty over the NN parameters, i.e., random vari-
ables θ, which contributes to the uncertainty measure
in output. In conventional NN, given their point esti-
mate, this uncertainty is zero, while in BNN it can be
explained away by providing more training data [42].
In our setting, the total variance predicted by the BNN can
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be written as

V{t|x,D} ⋍ 1

L

L∑

ℓ=1

∫ (
t− E{t|x,D}

)2
p(t|x,θℓ)dt

⋍ 1

L

L∑

ℓ=1

y(x,θℓ)
2 −

(
1

L

L∑

ℓ=1

y(x,θℓ)

)2

+
1

L

L∑

ℓ=1

yal(x,θℓ) (11)

where the first two terms of (11) represent the epistemic
uncertainty prediction, while the last term is the aleatoric
uncertainty prediction.

C. Real-Time BNN

While BNNs offer the significant advantage of quantify-
ing uncertainty in NN predictions, which is fundamental in
applications for critical scenarios, the requirement to per-
form multiple inferences for total variance estimation (i.e.,
sample averaging in (11)) remains a substantial drawback.
This can be resolved using non-Bayesian NNs trained to
learn the aleatoric uncertainty as described in [59]. However,
a second issue, which arises from the usage of NNs for uncer-
tainty estimation, is the inability of predicting the epistemic
uncertainty, that is, the incapacity of distinguishing between
epistemic and aleatoric uncertainty. This calls for a BNN
method that performs real-time inference and, simultaneously
it is able to distinguish between epistemic and aleatoric
uncertainty.

The first issue is present in all conventional BNN
approaches such as VI, e.g., MC-Dropout [67] and Bayes
by backpropagation (BBP) [66], which sample the parameters
from an approximation of the posterior pθ|D(θ|D), and MCMC
methods, e.g., stochastic gradient Langevin dynamics (SGLD)
[62], which directly sample from the real posterior. Moreover,
the MCMC methods require storing all the sample parameters
θℓ, which may not be feasible during deployment. A class
of BNN which is able to perform real-time inference are the
so-called teacher-student methods, e.g., BDK [68], where a
conventional NN, i.e., student NN, is trained to approximate
the behaviour, i.e., the output, of a teacher BNN. The term
dark knowledge in BDK was introduced to denote the hidden
information within the teacher network that can subsequently
be transferred to the student. Considering the BDK teacher
(T)-student (S) method, the model between input and output
now becomes

(T) : t = y(T)(x, θ) + ε(T)

(S) :

{
t = y(S)(x,w) + ε(S)(x)

σε(S)(x)
2
= y

(S)
al (x,w) + ξ(S)al

(12)

where w are the deterministic parameters of the student,
ε(T) ∼ N (0, σε(T)

2), ε(S)(x) ∼ N (0, σε(S)(x)
2) and ξ(S)al ∼

N (0, σ
ξ(S)
al

2). Note that the parameters of the teacher θ are
stochastic, whereas the parameters of the student w are
deterministic. During training, the teacher is trained as a
regular BNN, while the student learns the output of the
teacher using a Kullback-Leibler (KL) divergence loss function

as [68]

J(w|x) = KL
(
p(t|x,D) ∥ p(t|x,w)

)

=

∫
p(t|x,D) log p(t|x,D)

p(t|x,w)
dt

⋍ − 1

L

L∑

ℓ=1

Ep(t|x,θℓ)
{
log p(t|x,w)

}
. (13)

On the contrary, during inference, we discard the teacher
model and we just keep y(S)(x,w) as the predictive mean
and y

(S)
al (x,w) as the predictive variance. Since the efficacy

of this method relies on the teacher training, usually a MCMC
method, such as SGLD, is employed [68].

D. Proposed Bayesian Bright Knowledge Method

One drawback of BDK is that the student does not have any
knowledge of the epistemic uncertainty of the teacher, since
it only outputs the aleatoric uncertainty through y

(S)
al (x,w).

Distinguishing between aleatoric and epistemic uncertainties is
crucial for several reasons. Firstly, it sheds light on the reasons
behind a DL model’s uncertainty regarding a particular test
sample, which might be due to either insufficient training data
or the inherent noise present in the data. Secondly, pinpointing
the origin of uncertainty facilitates effective data acquisition
by guiding the process towards where collecting additional
training samples would be most beneficial. Lastly, considering
both kinds of uncertainties allows for a thorough assessment
of the total uncertainty associated with a prediction. Another
drawback of BDK is that the loss function for regression
derived from (13) is such that the student is trained only with
one teacher-parameter sample θℓ at the time [68]. In other
words, in BDK, the teacher and student are trained sequentially
using a stochastic version of (13) where a single parameter
sample θℓ is used at each step. On the contrary, we aim at
exploiting the full KL loss in (13) obtained by averaging the
teacher’s output over the L samples.

In order to solve these issues, we propose to employ a
student NN that predicts not only the aleatoric uncertainty,
but also the epistemic uncertainty. While on the one hand
a stand-alone NN is not able to output the uncertainty of
the prediction since the weights are deterministic, on the
other hand, by approximating the epistemic uncertainty of
an existing teacher BNN, we are able to fully capture and
distinguish between uncertainties on the data and on the
parameters. Since all the information is transferred from the
teacher to the student, we call this strategy Bayesian bright
knowledge (BBK). The proposed model is

(T) : t = y(T)(x, θ) + ε(T)

(S) :





t = y(S)(x,w) + ε(S)(x)

σε(S)(x)
2 = y

(S)
al (x,w) + ξ(S)al

V
{
t|x,D, ε(T)

}
= y(S)ep (x,w) + ξ(S)ep

(14)

where ξ(S)ep ∼ N (0, σ
ξ(S)ep

2). Note that the student has three out-

puts, y(S)(x,w) for target location prediction, y(S)al (x,w) for
aleatoric uncertainty prediction and y

(S)
ep (x,w) for epistemic
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uncertainty prediction. The total predictive variance is there-
fore y(S)al (x,w) + y

(S)
ep (x,w).

Defining with M the number of samples per mini-batch
M(T) and Nepochs the number of training epochs, at each
step i =

{
1, 2, . . . , Niter = Nepochs · ⌊N/M⌋

}
, the teacher is

trained with a SGLD step as

∆θi+1=
η
(T)
i

2

(
∇θ log p(θi)+

N

M

∑

m∈M(T)

∇θ log p(tm|xm,θi)
)
+zi

(15)

where ∆θi+1 = θi+1−θi, η(T)
i is the teacher learning rate at

step i, and zi is a noise sample fromN (0, η
(T)
i I|θ|). Following

standard SGLD initialization, the prior p(θi) is chosen to be
spherical Gaussian as p(θi) = N (θi;0, λ

(T)I|θ|), where λ(T)

is the L2 regularizer. For the student, we first need to define the
loss function and then a practical training procedure. Starting
with the loss function, for an input sample x, we propose a
two blocks function J(w|x) = A(w|x) +B(w|x). The first
term A(w|x) is the same original loss function (13) in BDK
and induces the student to learn the target variable t and
the aleatoric uncertainty σε(S)(x)

2. It can be shown that for
regression, the block A(w|x) can be approximated by (see
Appendix A)

A(w|x) ⋍ 1

L

L∑

ℓ=1

[
log
(
y
(S)
al (x,w)

)
+ y

(S)
al (x,w)

−1

×
(
σϵ(T)

2 +
∥∥∥y(T)(x,θℓ)− y(S)(x,w)

∥∥∥
2

2

)]
.

(16)

On the contrary, the second term B(w|x) forces the student to
learn the epistemic uncertainty coming from the teacher and
it is obtained via standard MLE as:

B(w|x) ⋍ 1

2σ
ξ(S)ep

2

∥∥∥∥
1

L

L∑

ℓ=1

y(T)(x,θℓ)
2

−
(
1

L

L∑

ℓ=1

y(T)(x,θℓ)

)2

− y(S)ep (x,w)

∥∥∥∥
2

2

. (17)

We refer to Appendix B for a derivation of the block B(w|x).
It is important to note that calculating J(w|x) requires L
predictions from the teacher. However, we aim to bypass the
storage of L samples of θℓ during training. To address this,
we propose a training method that retains the samples xm
and target tm across L forward-backward steps, subsequently
updating the student’s parameters as

∆wi+1 = −η
(S)
i

2

( 1

M

∑

m∈M(S)
i−L

∇wJ(wi|xm) + λ(S)wi

)
(18)

where ∆wi+1 = wi+1−wi, η(T)
i , η(S)i is the student learning

rate at step i, M(S)
i is the mini-batch of the student at step i

and λ(S) is an L2 regularizer hyper-parameter of the student.
Algorithm 1 describes the full training procedure, which
takes as input the training teacher and student datasets D(T)

and D(S)
x , respectively, and outputs the student parameters

w. We point out that the student dataset does not contain
any target values since the teacher output is adopted as a

Algorithm 1 Training Procedure

Input: Training datasets D(T) and D(S)
x

Output: Student parameters w
1: Initialize Teacher and Student parameters θ1 and w1

2: Initialize D(S)
x,old ← ∅ and D(S)

t,old ← ∅
3: Set Niter ← Nepochs · ⌊N/M⌋
4: for i = {1, . . . , Niter} do ▷ Batch-wise iteration
5: Sample minibatch M(T)

i of size M from D(T)

6: Sample zi ∼ N (0, η
(T)
i I|θ|)

7: Update Teacher using (15)
8: Sample minibatch M(S)

i of size M from D(S)
x

9: D(S)
x,old ← D

(S)
x,old ∪ {xm}m∈M(S)

i

10: D(S)
t,old ← D

(S)
t,old ∪ {y(T)(x,θi+1)}x∈D(S)

x,old

11: if i > L then
12: D(S)

x,old ← D
(S)
x,old\{xm}m∈M(S)

i−L

13: D(S)
t,old ← D

(S)
t,old\{y(T)(xm,θj)} m∈M(S)

i−L,

j={i−L,...,i}
14: Update Student using (18)
15: end if
16: end for

target. This gives the flexibility to exploit unsupervised, i.e.,
unlabelled, datasets for training the student in input locations
where we are interested in having reliable uncertainty metrics.

E. Multi-Dimensional Target Variable

In case the target variable is multi-dimensional, such
as for 3D location, we have that E{t|x,D} ∈ R|t|×1

and V{t|x,D} ∈ R|t|×|t|. Therefore, the new teacher-student
model becomes

(T) : t = y(T)(x, θ) + ε(T)

(S) :





t = y(S)(x,w) + ε(S)(x)

Σε(S)(x) = R |t|2×1
|t|×|t|

(
y
(S)
al (x,w)

)
+ ξ(S)al

V
{
t|x,D, ε(T)

}
= R |t|2×1

|t|×|t|

(
y(S)
ep (x,w)

)
+ ξ(S)ep

(19)

where R p×q
n×m

: Rp×q → Rn×m indicates the reshape

operation, ε(T) ∼ N (0,Σε(T)), ε(S)(x) ∼ N (0,Σε(S)(x)),
ξ(S)al ∼ N (0,Σ

ξ(S)al

) and ξ(S)ep ∼ N (0,Σ
ξ(S)ep

). Consequently,
the A(w|x) term in (16) in matrix form becomes

A(w|x) ⋍ 1

L

L∑

ℓ=1

[
1

2
log
(
det R |t|2×1

|t|×|t|

(
y
(S)
al (x,w)

))

+
1

2

(
y(T)(x,θℓ)− y(S)(x,w)

)⊤

×R |t|2×1
|t|×|t|

(
y
(S)
al (x,w)

)−1(
y(T)(x,θℓ)−y(S)(x,w)

)

+Tr
(
Σε(T)R |t|2×1

|t|×|t|

(
y
(S)
al (x,w)

)−1
)]
. (20)
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The B(w|x) term in (17) becomes

B(w|x) ⋍ 1

2

(
y(T)
ep (x)−R |t|2×1

|t|×|t|

(
y(S)
ep (x,w)

))⊤

×Σ
ξ(S)ep

−1
(
y(T)
ep (x)−R |t|2×1

|t|×|t|

(
y(S)
ep (x,w)

))

(21)

where the predictive epistemic uncertainty of the teacher is

y(T)
ep (x) =

1

L

L∑

ℓ=1

(
y(T)(x,θℓ)

⊤y(T)(x,θℓ)
)

−
(
1

L

L∑

ℓ=1

y(T)(x,θℓ)

)⊤(
1

L

L∑

ℓ=1

y(T)(x,θℓ)

)
.

(22)

F. AE-Based DL Model

For the cellular positioning application of the developed
BNN method, we propose using an AE stored inside each
BS, as depicted in Fig. 2(b), to derive key location features
from the sparse ADCPM samples x. The encoder func-
tion E(x) generates the latent features z, which encompass
location-centric data inherent in the channel. Conversely, the
decoder function D(z) attempts to recreate the input samples,
resulting in x̂. The AE aims to minimize the reconstruction
error metric ∥x− x̂∥22 [75], enabling the model to reproduce
the input x using the condensed data in z. This ensures that
z includes all crucial information needed for the single-BS
positioning objective. The DL model also contains a multi-
layer perceptron (MLP) positioning module which takes as
input the latent features and predicts the 3D target position.
Note that it is not necessary to detect LOS and NLOS
conditions since the MLP is combined with other BSs outputs
through the posterior predictive distribution. In other words,
the positioning module’s output is a soft information [2], [12],
[27], i.e., a distribution, which is coherently combined for
tracking applications.

In order to apply the BBK method, we created two identical
DL models, one for the teacher and one for the student. In the
teacher network, we treated the AE structure as a normal NN,
whereas the positioning module is trained as a full BNN with
SGLD optimizer. This is mainly done for faster convergence
reasons and because unsupervised samples, i.e., CIR samples
without position correspondence, can be easily gathered in
every position, thereby solving the OOD problem. On the
contrary, the student is trained as a conventional NN with
Adam optimizer [76] and the loss function

J(w|x) = λpos
(
A(w|x) +B(w|x)

)
+ λrec∥x− x̂∥22 (23)

where λrec regulates the sample reconstruction and λpos con-
trols the position estimation relevance. Generally, the relation
between these two hyper-parameters is λrec < λpos. This
is because firstly, the AE model exhibits greater complexity
compared to the MLPs used for positioning, resulting in a
rapid decrease in reconstruction error. Secondly, the feature
count in x surpasses the dimension of t. This inherently
amplifies the significance of the reconstruction error relative
to the positioning error.

V. LOCATION TRACKING WITH BNN METHODOLOGY

In this section, we first introduce the general problem of
sequential Bayesian tracking, and then we propose a solution
that integrates the BNN method.

A. Tracking Problem

We consider the non-linear Bayesian tracking problem of a
target whose state evolves according to the motion model [77]

tn = f (t)n (tn−1) + ε
(t)
n−1 (24)

where f
(t)
n (tn−1) is a non-linear function of the state tn−1

at time n − 1 and ε(t)n−1 is a non-independent and identical
distributed (non-IID) noise sequence. From (24), we define
the corresponding transition PDF p(tn|tn−1). The network
positioning system has measurements of the target modeled
as

xn = f (x)n (tn) + ε(x)n (25)

where f
(x)
n (tn) is a non-linear function which relates the

state and the measurement, and ε(x)n is a non-IID noise
sequence. Similarly to before, from (25), we can define
a likelihood function p(xn|tn). Moreover, we define with
x1:n = {xi, i = 1, . . . , n} the set of all available measurements
up to time n. Since (24) and (25) are 1st order hidden Markov
model (HMM), we can write that p(tn|tn−1,x1:n−1) =
p(tn|tn−1) and express the usual prediction phase of the state
through the Chapman-Kolmogorov equation

p(tn|x1:n−1) =

∫
p(tn|tn−1) p(tn−1|x1:n−1) dtn−1 (26)

where p(tn−1|x1:n−1) is the posterior PDF at time n− 1 and
p(tn|x1:n−1) is the prior PDF at time n. Subsequently, the
measurements are taken into account in the update phase
which recovers the posterior at time n:

p(tn|x1:n) ∝ p(xn|tn) p(tn|x1:n−1) . (27)

The EKF, or more complex conventional filters [28], imple-
ment the steps (26) and (27) by assuming explicit (and known)
parametric models for functions f

(t)
n (tn−1) and f

(x)
n (tn).

This is not viable in mixed LOS/NLOS conditions and with
complex measurement as ADCPM, which relate to the location
through an unknown non-linear and site-dependent function
f
(x)
n (tn). We thus propose to integrate a BNN into the

Bayesian filter and learn such function from data, as detailed
in the following section.

B. Proposed BNN for Tracking

For the integration of BNN in the tracking system, we con-
sider a set of BSs SBS. During the offline training phase,
each BS j trains its own BNN using a local training dataset
D(j) =

{
t
(j)
n ,x

(j)
n

}N(j)

n=1
. We point out that in this phase, any

BNN algorithm and layer structure could be employed and
assessed during an ad-hoc testing static positioning. Subse-
quently, in the online tracking phase, a set of BSs SBS,n ⊆ SBS
detects a target at timestep n and obtains a set of samples
Xn =

{
x
(j)
n

}
j∈SBS,n

. The main idea is to leave unaltered the
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Fig. 2. (a) Cooperative tracking system composed of three BSs. The timestep index n has been dropped for simplicity of notation. (b) DL model composed
of an AE structure and a positioning module. The input is the sparse ADCPM fingerprint, whereas the outputs are the reconstructed x̂, the target estimation
y(S)(x,w), the aleatoric uncertainty y

(S)
al (x,w) and the epistemic uncertainty y

(S)
ep (x,w).

prediction phase (where the dynamics function f
(t)
n (tn−1) is

easier to model) and focus on the tight integration of BNN
in the update phase. This is done to facilitate the integration
with already existing algorithms since we can just replace or
even augment the update part with the BNN as described
in the following sections. Moreover, while training of a
NN with static measurements is both affordable and precise,
replacing the prediction phase with dynamic models (e.g.,
LSTMs) introduces complexities. One significant challenge is
the data collection for target trajectories, which necessitates
the gathering of ground truth data, i.e., a reliable benchmark
to precisely measure the target’s exact trajectory.

After performing the prediction phase and obtaining the
prior distribution p(tn|x1:n−1), each BS j ∈ SBS,n outputs
the posterior predictive distribution p

(
tn|x(j)

n ,D(j)
)
, which

we indicate with p
(
tn|x(j)

n

)
. Now, we note that the posterior

in (27) resembles the posterior predictive distribution in (8),
but they are fundamentally different. Indeed, while the former
is the result of prior knowledge coming from the tracking, the
latter does not have any knowledge on the sequentiality of
the target state since the BNN network has just been trained
with input-output samples. Therefore, at each timestep n, the
BNN does not have any prior knowledge on where the target
was at previous time n − 1, formally, tn ∼ U

(
t
(j)
min, t

(j)
max

)
,

where t(j)min and t
(j)
max are the limits of the coverage area

of the j-th BS. This is similar to what happens during the
computation of the likelihood function p(xn|tn) where the
measurement model in (25) is considered without previous
time-dependence. By analogy and considering the uniform
distribution of tn, we can write p

(
x
(j)
n |tn

)
∝ p
(
tn|x(j)

n ,D
)
.

In this way, we combine the predictions of multiple BSs with
the prior PDF on the target state and obtain the updated poste-
rior. The full tracking procedure can be found in Algorithm 2.

Algorithm 2 Tracking Procedure
Input: Posterior p(tn−1|x1:n−1) at time n− 1
Output: Posterior p(tn|x1:n) at time n

1: Compute prediction phase in (26)
2: Measure sample x(j)

n

3: Compute p
(
x
(j)
n |tn

)
∝ p
(
tn|x(j)

n ,D
)

4: for j′ ∈ SBS,n\{j} do
5: Send p

(
x
(j)
n |tn

)
to j′

6: Receive p
(
x
(j′)
n |tn

)
from j′

7: end for
8: Update p(tn|x1:n) ∝

∏
j∈SBS,n

p
(
x
(j)
n |tn

)
p(tn|x1:n−1)

An example of cooperative tracking performed by three BSs
is shown in Fig. 2(a), where the exchange of the likelihood
functions permits the reduction of the target position uncer-
tainty (represented by the intersections of covariance areas in
the figure).

For the scenario described in Sec. VI, the posterior pre-
dictive distribution is described by two parameters, i.e., the
predictive mean (10) and the predictive variance (11). There-
fore, we propose to approximate the likelihood function
obtained by each BS with a multivariate normal distribution
as

p
(
x(j)
n |tn

)
⋍ N

(
x(j)
n ;E

{
tn|x(j)n ,D

}
,V
{
tn|x(j)n ,D

})

= N
(
x(j)
n ;µ(j)

n ,Σ(j)
n

)
. (28)

Note that for the real-time BBK, the predictive mean and
variance are respectively

µ(j)
n = y(S)

(
x(j)
n ,w(j)

)
(29)
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Σ(j)
n = R |t|2×1

|t|×|t|

(
y
(S)
al

(
x(j)
n ,w(j)

)
+ y(S)

ep

(
x(j)
n ,w(j)

))
. (30)

This approximation makes it very easy and effective to com-
bine the likelihood functions of the BSs to be used in (27)
as [78]

p(xn|tn) =
∏

j∈SBS,n

p
(
x(j)
n |tn

)
∝ N

(
xn;µn,Σn

)
,

where

µn = Σn

( ∑

j∈SBS,n

Σ(j)−1

n µ(j)
n

)

Σn =
( ∑

j∈SBS,n

Σ(j)−1

n

)−1

.

VI. SIMULATION EXPERIMENTS

A. Simulation Results

To assess the performance of the proposed BNN-based
tracking system, due to the unavailability of real-world exper-
imental activities, we simulate a 5G positioning network
based on the 5G new radio (NR) MATLAB clustered delay
line (CDL) channel model, which can be defined over a
bandwidth of 2 GHz in the frequency range from 0.5 GHz
to 100 GHz [79]. The radio wave propagation is simulated
using a ray-tracing method [80], [81], [82] from the Wireless
InSite 3D prediction tool [83], which plots the propagation
paths from the UE to the BSs based on the surface geometry
from a 3D map file. The ray-based solver can manage up
to fifty reflections and three diffractions, ensuring a realistic
simulation of the effect of buildings and terrains on the radio
signal propagation. In mmWave scenarios, the propagation
model integrates atmospheric absorption and allows the inclu-
sion of vegetation within the propagation setting, assessing
the impact of diffuse scattering on the channel response and
ensuring spatial consistency. The channel is then obtained by
using the rays as mean clusters and by including: the Doppler
shift, according to the UE mobility, a main LOS cluster (if the
UE is in visibility) with K-factor equal to 13.3 dB, a number
of sub-cluster per cluster equal to 2, and moving scatterers in
the channel. The cluster-wise root mean square (RMS) angle
spreads and delay spreads have been set to 3 degrees and
3.90625 ns, respectively.

The 3D map is obtained through Google Maps, Render-
Doc, and Blender software with MapsModelImporter plugin.
An example of the extracted 3D map can be found in Fig. 3,
which represents both the 3D patches with known textures.
For our experimental setup, we emulate a 3GPP urban micro
(UMi) environment [69] spanning a 1000 × 1000 m square
near the Massachusetts Institute of Technology (MIT) cam-
pus, Cambridge, MA 02139, USA. The setting encompasses
19 sites with an inter-site distance (ISD) of 200 m, arranged
in a hexagonal pattern. Every site is composed of 3 cells, each
at a height of 25 m and spaced 120 degrees apart in azimuth.

Each cellular antenna is equipped with an UPA setup with
Nh = Nv = 8 antenna elements and a mechanical downtilt
of 15 degrees. The antenna element details were derived

Fig. 3. Digital twin 3D map representation of the urban scenario around
MIT campus.

from [84], ensuring a front-to-back ratio of approximately
30 dB and a peak gain reaching 8 dBi. The UE trajectories are
generated by the SUMO software, which simulates realistic
vehicular traffic throughout a given road grid, according to the
interactions between vehicles, geometry of the map and speed
limits. Over 600 s of simulation, we created up to 100 vehicle
trajectories and we gathered data points every second. The
absolute velocities of the vehicles span in [0, 34] km/h, with a
mean and standard deviation of 9.4 and 6.3 km/h, respectively.
In total, we obtained 2593 and 702 training and testing
positions, respectively, and about 9.3·104 and 2.5·104 training
and testing ADCPM samples, respectively. The simulated
testing trajectories with their absolute velocities, along with
the BSs composing the UMi scenario, are shown in Fig. 4.
On the contrary, the different traffic densities can be found
in Fig. 8-top. In each position, every UE broadcasts 5G
sounding reference signal (SRS) to all neighbor BSs using a
carrier frequency fc = 28GHz and a transmission bandwidth
B = 400MHz. Then, each BS performs OFDM demodulation
and obtains the SFCRM in (2) through pilot signals and
least squares (LS) channel estimation. Finally, the ADCPM
is computed using (3) and (4).

B. Discussion on Practical Implementation

The tracking system is designed to separate the prediction
phase in (26) and update phase in (27). Consequently, data
acquisition can be performed statically at each position to
train the BNN, whereas the motion model can be adjusted
according to the dynamics of the UE. However, in case
we want to speed up the process, we can adopt a vehicle
or platoon of vehicles [85], [86] to record the timestamp
and related noisy position with GNSS, which will then be
mapped with the channel recording at the BSs. The uncertainty
about the ground truth position is automatically learned by
the aleatoric uncertainty prediction, whereas the density of
the training points is taken into account by the epistemic
uncertainty.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on August 24,2024 at 05:59:27 UTC from IEEE Xplore.  Restrictions apply. 

Chapter 9. Efficient Uncertainty Quantification for Mobile Positioning



2332 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 9, SEPTEMBER 2024

Fig. 4. Test trajectories with two vehicles in the area of Cambridge, MA,
USA. The red triangles indicate the BS positions.

For the simulations, we did not consider multi-user inter-
ference (MUI) as the focus of the paper is to assess the
best-case performances of the proposed BBK method and
tracking system. However, when dealing with more than one
user, the BSs can perform robust channel estimation methods,
e.g., linear minimum mean-square error (LMMSE) or non-
linear pre-coding schemes [87], [88], to reduce the impact
of MUI. Other possible solutions include the usage of data
association (DA) schemes to track and remove the multipath
components of the interference [89].

C. DL Model Implementation

For the specific design of the DL positioning model,
we design the AE part with the Segnet architecture [90].
This permits to manage the sparsity of the ADCPM input and
perform robust feature extraction, which is pivotal for accurate
positioning. Indeed, the upsampling layers utilize encoder pool
indices for custom sparse feature mapping. During testing,
the decoder segment is discarded, as input reconstruction is
only needed for learning latent feature representations during
training. Concerning the positioning module, given the natural
regularization induced by the BNN teacher model, we inserted
Gaussian error linear unit (GELU) activations functions after
each linear layer. We performed an architecture search by dou-
bling the number of neurons in each layer, until reaching both
the latency requirements of 5 ms for fully autonomous driving
vehicles [44] and a low bias in the performances. For the latter,
we performed a similar procedure in [34] by testing the posi-
tion module to perform localization with a synthetic dataset
where the input latent features are substituted with geometric
measurements (i.e., AOAs and TOFs). After multiple neural
architecture searches, we set the number of neurons in each
layer to: [16, 32, 64, 128, 256, 512, 256, 128, 64, 32, 16, 9]. For
the prediction of the uncertainties, we placed softplus acti-
vation functions at the outputs of the positioning module

which relates to the diagonal elements of R |t|2×1
|t|×|t|

(
y
(S)
al (x,w)

)

and R |t|2×1
|t|×|t|

(
y
(S)
ep (x,w)

)
. This prevents the variances on the

diagonal from being negative. Finally, in order to make the
aleatoric and epistemic predictions valid covariances, we add
a regularization term to the diagonal of each matrix prediction
to ensure they are non-singular and enforce symmetry in each
matrix by averaging them with their transpose.

To measure the time required by the system to perform
inference, we report that the total number of floating point
operations (FLOPs) required by the DL model are 27.4 · 109.
Simulations were conducted on a workstation boasting an
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz, with 96 GB
RAM and a Quadro RTX 6000 24 GB GPU. Since the GPU
has a single-precision performance of 16.3 ·1012 floating point
operations per second (FLOPS), the inference time per sample
can be estimated as 27.4 · 109/16.3 · 1012 s = 1.6ms. Con-
sidering the delay required to exchange a packet comprising
µ

(j)
n and Σ(j)

n between the two farthest BSs, i.e., less than
1 ms with fiber’s length of 1 km and up to 80% of traffic
load [91], we assume a latency of about 2 ms. In case of
multiple targets, we can exploit the tensor operations of the
GPU with 130.5 · 1012 FLOPS.

All the experiments were performed using Pytorch [92]
and, unless stated otherwise, models underwent training for
600 epochs with a batch size of M = 256 and the number
of NN parameter samples L = 40. The learning rates of the
teacher and student were set to η(T)

0 = 10−5 < η
(S)
0 = 10−4,

in order to have a better convergence of the teacher (with
lower learning rate) and, conversely, a faster convergence of
the student. Regarding the hyper-parameters, λrec and λpos
were empirically set using a grid method in the range [0.1, 1]
with a 0.1 step size and following the intuition described in
Sec. IV-F, resulting in λrec = 0.1 and λpos = 0.9. For the
L2 prior regularizers in (15) and (18), we recommend setting
λ(T) ≪ λ(S) since the student is exposed to more data than the
teacher, i.e., while the teacher repeatedly processes the same
training data, the student encounters new, randomly generated
data at every stage. Therefore, we set λ(T) = 0.1 and λ(S) = 1.

D. Numerical Results

1) Aleatoric and Epistemic Uncertainties: In this first
experiment, we assess the capabilities of the proposed BBK
method to learn both the aleatoric and epistemic uncertainty
of the SGLD-based teacher. To this aim, we created a 2D
artificial dataset where the input features are a noisy version
of the UE 2D position (i.e., t1 and t2). To test the aleatoric
uncertainty only, we employ a training dataset with densely
sampled positions, so to induce the epistemic uncertainty to
zero, and we add a Gaussian noise whose standard deviation
varies linearly in [0.1, 1]m along with the t1 axes. Therefore,
the objective is to predict this variation of aleatoric uncertainty
which still remains in the dataset. The training dataset is
shown in Fig. 5a. Then, we trained the SGLD-based teacher,
the BDK-based student, and the BBK-based student, and
we plotted the predicted variance measuring the aleatoric
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Fig. 5. (a) Training points of the positioning dataset for aleatoric uncertainty assessment. (b), (c) and (d), predicted aleatoric uncertainty of the whole 2D
space for SGLD, BDK and BBK, respectively.

Fig. 6. (a) Training points of the positioning dataset for epistemic uncertainty assessment. (b) and (c), predicted epistemic uncertainty of the whole 2D space
for SGLD, and BBK, respectively.

uncertainty of the three methods on a 2D testing grid for
t1, t2 ∈ [−10, 10] m. From the results in Fig. 5, we observe
that both the Bayesian teacher SGLD and the BBK are able to
accurately reproduce the real additive noise in Fig. 5a. Indeed,
the BBK-based student is trained to predict the SGLD-based
teacher output, whose performances are boosted by the L
consecutive predictions per input sample. On the contrary, the
BDK achieves lower fidelity since this method is trained to
approximate the point estimate of the teacher at each step,
whereas the BBK is trained to predict the average of L
predictions, i.e., the sum in (20).

To test the epistemic uncertainty, we fix the standard
deviation of the additive Gaussian noise to 0.1 m, while
we linearly change the density of the training points in the
range [4, 40] pts/m2. The training dataset and the epistemic
uncertainty predictions for SGLD and BBK are reported in
Fig. 6. Note that, in this scenario, the BDK cannot be evaluated
as it lacks the capability to predict epistemic uncertainty.
For comparison of the epistemic uncertainty with the ground
truth, we need to confront the predicted epistemic uncertainty
with the squared root of the inverse density of the training
points. This is because, in a well-calibrated BNN model,
whenever a prediction has P % confidence, then the model’s
forecast aligns with the true occurrence approximately P %
of the time. From the results, we can notice that the proposed
BBK reconstructs almost completely the epistemic uncertainty,
while being at the same time L times faster than the teacher
model. Note that, whenever the training points are very dense,

Fig. 7. Boxplot of the MAE per batch for different numbers of samples L
realized from the posterior distribution pθ|D(θ|D).

i.e., 40 pts/m2, the epistemic uncertainty almost drops to zero.
On the contrary, when we have a low density, such as the
extreme case of 4 pts/m2 (i.e., 1 pt/0.25 m2), the predicted
epistemic uncertainty is very similar to the squared root of
the inverse density of the training points.

2) Hyper-Parameter Tuning for MC Sampling: This assess-
ment is for tuning the number of samples L adopted in the
teacher SGLD, as well as for verifying the maximum static
positioning accuracy achieved by the proposed single-BS DL
model in the ray-tracing dataset. To this aim, Fig. 7 shows
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Fig. 8. Density of training ADCPM samples [pts/m2] (top). Predicted testing
epistemic uncertainty [m] (bottom).

the boxplot of the testing MAE over the mini-batches varying
L ∈ {10, 20, 40, 100}. First, we observe that even with a low
L, the achieved median MAE is below 80 cm, confirming the
capabilities of the model to infer the position from the full
CIR. Second, we notice that generally increasing the number
samples, i.e., the number of ensembles employed to estimate
the posterior predictive distribution, decreases the positioning
error. This is true up to a plateau of L = 40 where we can fully
represent the real output distribution and achieve about 60 cm
of error. In SGLD, a typical choice of L for traversing the
posterior is given by N/M [62], which is equal to the number
of steps to process the whole dataset. However, in practice,
this number could be much smaller and thus, for the rest of
the paper, we set L = 40. We point out that, considering a
1.6 ms of inference time per sample, using only the teacher
with L = 40 for position prediction would be unfeasible for
real-time applications.

3) Out of Distribution Uncertainty Estimation: This exper-
iment has the goal of assessing the epistemic uncertainty
of the DL model and BBK method in positions where no
or few training samples are given. To verify this behaviour,
in Fig. 8, we show the density of the training points

Fig. 9. Tracking performances in terms of absolute error (top). Number of
BSs in LOS per timestep (bottom).

(Fig. 8-top) and the predicted epistemic uncertainty of the
student over random testing positions around the BS area
(Fig. 8-bottom). From the figure, we can clearly notice that
the model is much more confident where many training
points are provided (around 10 cm for a density 80-90 pts/m2),
confirming the results of previous analysis. On the contrary,
in the presence of around 10 pts/m2, the student correctly
predicts an uncertainty of about 50 cm. In the extreme cases
of only 1 point and 2 points, the uncertainty greater than 2 m
clearly indicates that the model is highly uncertain in those
areas. Intuitively, this spatial uncertainty might be linked to the
spatial decorrelation distance of the 5G system, but we leave
this problem for future research. We point out that, by correctly
predicting the epistemic uncertainty, the system automati-
cally generalizes on unseen input samples as the predicted
uncertainty is then adopted by the tracking system to weight
the importance of the sample by means of the likelihood
function.

4) Mobile Positioning in Urban Environment: This final
experiment has the objective of comparing the performances
of the integrated BNN tracking method with respect to two
baselines: an EKF and a state-of-the-art TCN model described
in [56]. For a fair comparison, both the BNN-based approach
and the EKF adopt the same motion model (i.e., a random walk
with 2 m standard deviation on the position), but they differ in
the update step. For the EKF, we employ, as in conventional
geometric localization, LOS time difference of flight (TDOF)
measurements, estimated from the cross-correlation with the
SRS according to 3GPP standard, and LOS AOA measure-
ments, obtained through the multiple signal classification
(MUSIC) algorithm [93]. Given the high blockage level of 5G
signals due to the buildings, the UEs are also equipped with
a GNSS receiver from which noisy measurements of the state
are gathered. The standard deviation of the Gaussian noise
on the GNSS measurements is set to 2 m and it serves as
an upper-bound on the accuracy. On the contrary, for BNN-
based tracking, we just employ the output of the real-time
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Fig. 10. Positioning performances in terms of cumulative density function
(CDF) of the distance error for the proposed BNN-based tracking, EKF and
TCN.

student with BBK method obtained from both LOS and
NLOS ADCPM measurements. Regarding the TCN model,
as suggested in [56], we consider the 1D CIR of the nearest
BS by transforming the 2D ADCPM into a single vector.

The results of the tracking, i.e., testing trajectories in
Fig. 4, are shown in Fig. 9 where we report the absolute
location error per timestep, together with the number of BSs
in LOS. Moreover, in Fig. 10 we also report the CDF of the
positioning error for all the methods. From Fig. 9 we can
clearly notice that the EKF struggles to achieve a location
accuracy of 2 m when the number of LOS BSs is less than 3.
However, even in a dense UMi scenario with 19 sites (57
BSs), the average number of LOS BSs is 1.6, leading to
frequent inaccuracies in positioning. On the contrary, the TCN
model achieves slightly higher performances by tracking the
UE position even with just one BS measurement, thanks to
the fingerprinting approach. However, among all methods, the
BNN-based tracking consistently achieves sub-meter accuracy
even in the absence of any LOS BS. This is mainly due to its
ability to exploit BSs cooperation by fusing multiple NLOS
position estimations and to the usage of 2D ADCPM with
an AE structure which captures spatial relations in the input.
Finally, observing the CDF of the absolute error, we can notice
that the BNN-based tracking outperforms both the TCN and
EKF by reaching a median error of 46 cm and under 1 m in
87% of the cases.

VII. CONCLUSION

In this paper, we addressed the problem of real-time 6G
tracking in dense urban environments under heavy signal
blockage, by presenting a first step toward the development
of reliable and trustworthy DL models for precise positioning.
We propose a novel teacher-student BNN method, namely
BBK, which permits the prediction of real-time location
estimates, together with an evaluation of both aleatoric and
epistemic uncertainties. Estimation of both terms is of utmost
importance for providing reliability indicators in critical appli-
cations and for optimizing the positioning process (e.g.,
augmenting training in uncertain areas). This enables the inte-

gration of the BNN method into a proposed tracking system,
which seamlessly combines with existing tracking algorithms
by substituting or enhancing the measurement-update step. The
BNN method is applied to a proposed AE-based DL model,
as foreseen by 3GPP standard, which takes as input the whole
CIR by means of a 2D ADCPM. This permits to exploit
position-linked attributes like TOF, AOA, and RSS of each
propagation path, as a channel fingerprint.

The real-time BBK method and tracking integration are
tested in a realistic C-ITS setting within a 3GPP-specification
compliant UMi scenario, created by means of 3D maps
and advanced ray-tracing simulations. The results show that
the proposed BBK methodology is able to estimate both
the aleatoric uncertainty, outperforming the state-of-the-art
real-time BDK method, and the epistemic uncertainty in
OOD scenarios from the reference teacher. Regarding mobile
positioning performances, the proposed cooperative tracking
methodology outperforms geometric-based tracking filters and
state-of-the-art TCN models by localizing a moving target with
a median absolute error of 46 cm.

Future works include extending our approach to both indoor
and outdoor scenarios with next-generation cellular networks.
In indoor scenarios, the main challenges include severe mul-
tipath and frequent changes of the channel characteristics due
to moving objects in the environment. In outdoor scenarios,
implementation and assessment in real-world C-ITS is an
important research direction, where training procedure can be
performed by digital twin simulation.

APPENDIX A
PROOF OF (16)

To prove (16), we start by writing the function A(w|x) as

A(w|x) = KL
(
p(t|x,D)∥p(t|x,w)

)

=

∫
p(t|x,D) log p(t|x,D)

p(t|x,w)
dt

⋍ −Ep(t|x,D)

{
log p(t|x,w)

}
(31)

where the last approximation comes from the removal of
constant terms in w. Therefore, we can write

A(w|x) ⋍ −
∫ (∫

p(t|x,θ)p(θ|D)dθ
)
log p(t|x,w)dt

= −
∫
p(θ|D)

(∫
p(t|x,θ) log p(t|x,w)dt

)
dθ

= −
∫
p(θ|D)

(
Ep(t|x,θ)

{
log p(t|x,w)

})
dθ

⋍ − 1

L

L∑

ℓ=1

E
{
log p(t|x,w)

}
=

1

L

L∑

ℓ=1

A(w|x,θℓ)

(32)

where we adopted the MC approximation for calcu-
lating the integral using the samples θℓ. For regres-
sion tasks, p(t|x,θℓ) = N

(
t; y(T)(x,θℓ), σε(T)

2
)
, whereas

p(t|x,w) = N (t; y(S)(x,w), σε(S)(x)
2). Thus, we can write
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A(w|x,θℓ) without considering the constant values in w as

A(w|x,θℓ) = −
∫
p(t|x,θℓ) log p(t|x,w)dt

⋍
∫
p(t|x,θℓ)

(
− log

(
σε(S)(x)

2
)

2
+
∥y(S)(x,w)− t∥22

2σε(S)(x)
2

)
dt.

(33)

Finally, by splitting the integral for each of the terms inside
the L2 norm and by adopting completion of squares, we obtain

A(w|x,θℓ) ⋍
1

2
log
(
σε(S)(x)

2
)
+

1

2
σε(S)(x)

−2

×
(
σϵ(T)

2 +
∥∥∥y(T)(x,θℓ)− y(S)(x,w)

∥∥∥
2

2

)

⋍ 1

2
log
(
y
(S)
al (x,w)

)
+

1

2
y
(S)
al (x,w)

−1

×
(
σϵ(T)

2 +
∥∥∥y(T)(x,θℓ)− y(S)(x,w)

∥∥∥
2

2

)

(34)

where the final approximation arises from the model (14).

APPENDIX B
PROOF OF (17)

We derive the loss function block B(w|x) that permits
the student network to learn the epistemic uncertainty of the
teacher. By recalling the model in (14), we start by writing
the negative log-likelihood according to the MLE approach:

B(w|x)=− log
(
p
(
V
{
t|x,D, ε(T)

}∣∣∣x,w
))

=− log
(
N
(
V
{
t|x,D, ε(T)

}
; y(S)ep (x,w), σ

ξ(S)ep

2
))
.

(35)

Then, we remove constant values in w and approximate the
epistemic uncertainty with the predictive epistemic uncertainty
of the teacher as

B(w|x) ⋍ 1

2σ
ξ(S)ep

2

∥∥∥∥V
{
t|x,D, ε(T)

}
− y(S)ep (x,w)

∥∥∥∥
2

2

⋍ 1

2σ
ξ(S)ep

2

∥∥∥∥
1

L

L∑

ℓ=1

y(T)(x,θℓ)
2

−
(
1

L

L∑

ℓ=1

y(T)(x,θℓ)

)2

− y(S)ep (x,w)

∥∥∥∥
2

2

(36)

concluding the derivation.
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Conclusions and Future Develop-
ments

In this thesis, we developed key solutions for open problems in MASs, mainly dividing
between approaches for cooperative learning and cooperative inference. The firsts have
been developed in the context of vehicular, medical, and IoT networks, whereas the
seconds have been focused on next-generation cellular networks. In Part II, devoted to
cooperative learning, we addressed the main challenges related to graph-aware, privacy-
preserving, and non-stationary learning. Graph-aware centralized learning has been
investigated for the tasks of DA and CP in complex networks where MPAs do not
perform optimally. Privacy-preserving decentralized learning has been studied to evolve
the concept of centralized learning into decentralized or fully decentralized networks of
agents. We proposed a real FL platform, capable of performing asynchronous learning
operations, which was tested in real medical and IoT networks. We subsequently
explored solutions for the optimization of asynchronous FL processes, and we proposed
innovative WAC algorithms for decentralized heterogeneous networks. Under resource-
constrained devices, we extended the SL approach to a consensus architecture with the
SCFL framework, enabling fully decentralized and low-complexity parallel training and
testing procedures in MASs. The cooperative learning part concluded with the extension
to algorithms for non-stationary learning, i.e., MARL algorithms in Dec-POMDP. In
particular, we developed a data-driven extension of the ICP task where agents optimize
both state learning and communication efficiency at the same time.

Gathered the knowledge of cooperative learning, in Part III, we explored the co-
operative inference for sensing tasks in next-generation cellular networks, i.e., NLoS
identification, CP and tracking. In particular, the objective was to exploit C-ML for cre-
ating models that were efficient, reliable, and accurate in the task at hand. For the NLoS
identification problem, we proposed an anomaly detection framework where the latent
feature distribution of high-dimensional channels is learned by means of a DAKDM
model. This enabled an efficient representation and evaluation of distributions without
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the need for large storage requirements, as well as multiple stages of training. For the
CP task, we introduced a new loss function for simultaneous position regression and
NLoS condition classification. Then, we proposed a cooperative inference algorithm that
included the exchange of latent features among BSs to effectively perform localization
in both NLoS and LoS conditions. Finally, we extended the static positioning to tracking
scenarios where real-time inference is of paramount importance. To this aim, we first
proposed a new BNN technique, namely BBK, that is able to evaluate the reliability,
i.e., uncertainty of position estimates, without requiring sampling procedures and being
able to distinguish the cause of the uncertainty. Then, we introduced an integration of
general BNN methods into Bayesian tracking filters by combining the BNN predictions
and related uncertainties into the update step.

Given the exponential increase of interest in cooperative techniques for MASs, many
research paths can be undertaken to further improve the proposed algorithms and tech-
niques in this thesis. Starting with graph-aware cooperative learning, future works
could improve GNN-based DA by considering false and miss detections by means of
intra-temporal measurement association or memory-based GNNs. Moreover, exactly
as in MPA and neural-enhanced-BP, the GNN-based-CP could be extended to the more
general task of MOT, so to have an entire data-driven graph-aware system capable of
performing DA, CP and MOT. In D-ML and FD-ML, the asynchronous FL process
optimization could be extended to consensus-based schemes taking into account not
only agents’ characteristics but also network delays and communications efficiency.
Moreover, the study on decentralized FL algorithms for highly non-IID distributions
could be extended to combine WAC with parameter optimization techniques to penalize
divergence from the global model or to take into account the local distribution of data.
Regarding non-stationary learning for ICP tasks, additional works could include the
DA of target’s measurements, methods for both decentralized training and execution
procedures among agents, or the exploitation of general latent features of object de-
tectors as targets for measurement fusion. In the context of cooperative inference in
next-generation cellular networks, future works could investigate MOT by perform-
ing segmentation of the ADCPM to distinguish the components of the different UEs.
Moreover, sim-to-real transfer learning could also be implemented where training is
performed on simulated digital-twin maps, and then direct deployment and inference are
performed in real systems. Finally, regarding BNN-based tracking, subsequent studies
could expand the Gaussian likelihood approximation and also combine likelihoods of
both geometric and fingerprinting measurements whenever LoS conditions are detected.

Given the advanced and cutting-edge nature of the proposed algorithms, signifi-
cant challenges may arise when companies attempt to implement and deploy them
in real-world scenarios. For instance, deploying the MPNN models for cooperative
data association and the MARL algorithm ICP-MAPPO for cooperative positioning
in vehicular networks may face obstacles such as the need for real-time, high-quality
sensor data from multiple vehicles, reliable inter-vehicle communication links, and the
computational limitations of onboard vehicle hardware. Vehicles may not have sufficient
processing power to run complex algorithms in real-time, and ensuring low-latency
communication between numerous fast-moving vehicles presents a significant technical
challenge. For example, maintaining consistent performance during sudden changes
in traffic flow or in areas with poor connectivity requires advanced communication
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infrastructure. In the case of the custom FL system built on the MQTT protocol for
medical networks, real-world implementation might encounter stringent data privacy
regulations like GDPR. Hospitals and medical institutions must ensure that patient data
remains confidential during transmission and processing. Additionally, the heterogeneity
of medical devices in terms of computational capabilities and network connectivity can
complicate the synchronization and efficiency of the FL process. The lack of standard-
ized protocols across different medical devices can lead to compatibility issues, impeding
seamless integration into the FL framework. Implementing interoperability standards
such as Fast Healthcare Interoperability Resources (FHIR) and ensuring compliance
with healthcare communication protocols like Health Level Seven International (HL7)
can mitigate some of these challenges. For the SFL algorithms extended to the decen-
tralized setting (i.e., SCFL), challenges include managing communication overhead and
ensuring synchronization among resource-constrained IoT devices without a central
coordinating server. Devices must efficiently exchange smashed data while preserving
privacy and operating within their limited computational and energy budgets. In the
context of next-generation cellular networks, implementing anomaly detection schemes
(e.g., DAKDM) for NLoS identification or DL-based localization with latent feature
exchange among BSs may be hindered by the need to process high-dimensional channel
data (e.g., ADCPM) in real-time. This requires significant computational power and
efficient data processing pipelines. Network infrastructure must be capable of handling
the increased computational load without introducing latency that could degrade the
performance of time-sensitive applications. In practice, network conditions may not
always support the required bandwidth or latency, potentially affecting the accuracy
and reliability of cooperative positioning. Lastly, integrating the BNN method BBK
for real-time uncertainty quantification in mobile positioning into existing tracking
systems presents challenges due to the need for frequent re-training to adapt to changing
environments. BNNs may require extensive re-training when deployed in new areas
or under varying conditions like infrastructure changes, weather, or signal propagation
differences, which is time-consuming and computationally intensive. Collecting suffi-
cient data for re-training can be impractical or costly. Ensuring accuracy and reliability
without constant re-training is difficult. Techniques like transfer learning or domain
adaptation may help but add complexity. Balancing updated models with computational
and real-time processing constraints is crucial for deployment in dynamic, real-world
scenarios.

The thesis successfully demonstrates the broad applications and advantages of co-
operative machine learning within MASs, highlighting its pivotal role in improving
the effectiveness and efficiency of complex task execution across various fields. Key
takeaways include the demonstrated ability of MAS to handle tasks beyond the capability
of individual agents, the critical importance of privacy and data integrity in distributed
learning, and the flexibility of MAS in adapting to diverse and dynamic environments.





Bibliography

[1] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” IEEE
Access, vol. 6, pp. 28 573–28 593, Apr. 2018.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study
of distributed multi-agent coordination,” IEEE Trans. Ind. Inform., vol. 9, no. 1,
pp. 427–438, Feb. 2013.

[3] N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni, S. Bakas,
M. N. Galtier, B. A. Landman, K. Maier-Hein et al., “The future of digital health
with federated learning,” npj Digital Med., vol. 3, no. 1, p. 119, Sep. 2020.

[4] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-oriented
cooperative smart objects: From IoT system design to implementation,” IEEE
Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 11, pp. 1939–1956, Nov. 2018.

[5] Q. Yang, S. Fu, H. Wang, and H. Fang, “Machine-learning-enabled cooperative
perception for connected autonomous vehicles: Challenges and opportunities,”
IEEE Netw., vol. 35, no. 3, pp. 96–101, May 2021.

[6] M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, “Big
data analytics, machine learning, and artificial intelligence in next-generation
wireless networks,” IEEE Access, vol. 6, pp. 32 328–32 338, May 2018.

[7] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, Jan. 2022.

[8] E. Ahmed and H. Gharavi, “Cooperative vehicular networking: A survey,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 996–1014, Mar. 2018.

[9] M. Brambilla, M. Nicoli, G. Soatti, and F. Deflorio, “Augmenting vehicle lo-
calization by cooperative sensing of the driving environment: Insight on data
association in urban traffic scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1646–1663, Apr. 2020.

[10] G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, and H. Wymeersch, “Implicit
cooperative positioning in vehicular networks,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 12, pp. 3964–3980, Dec. 2018.

[11] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated opti-
mization: Distributed machine learning for on-device intelligence,” ArXiv, Oct.
2016.

211



Bibliography

[12] K. Hjerppe, J. Ruohonen, and V. Leppanen, “The general data protection reg-
ulation: Requirements, architectures, and constraints,” in 2019 IEEE 27th Int.
Requirements Eng. Conf. (RE). IEEE, Sep. 2019, pp. 265–275.

[13] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. Vin-
cent Poor, “Federated learning for internet of things: A comprehensive survey,”
IEEE Commun. Surveys & Tuts., vol. 23, no. 3, pp. 1622–1658, Apr. 2021.

[14] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective federated
learning in mobile edge networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3606–3621, Oct. 2021.

[15] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang, and
H. Vincent Poor, “Fast-convergent federated learning,” IEEE J. Sel. Areas Com-
mun., vol. 39, no. 1, p. 201–218, Jan. 2021.

[16] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Protection
against reconstruction and its applications in private federated learning,” Dec.
2018, arXiv:1812.00984.

[17] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q. S. Quek,
“Asynchronous federated learning over wireless communication networks,” IEEE
Trans. Wireless Commun., vol. 21, no. 9, pp. 6961–6978, Mar. 2022.

[18] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating
devices: A consensus approach for massive IoT networks,” IEEE Internet Things
J., vol. 7, no. 5, pp. 4641–4654, Jan. 2020.

[19] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for efficient
federated learning: An online learning approach,” in 2020 IEEE 40th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Nov. 2020, pp. 300–310, iSSN: 2575-8411.

[20] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote, “A survey of
learning in multiagent environments: Dealing with non-stationarity,” ArXiv, Jul.
2017.

[21] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision,
enabling technologies, and applications,” IEEE J. Sel. Areas Commun., vol. 40,
no. 1, pp. 5–36, Jan. 2022.

[22] A. Behravan, V. Yajnanarayana, M. F. Keskin, H. Chen, D. Shrestha, T. E. Abru-
dan, T. Svensson, K. Schindhelm, A. Wolfgang, S. Lindberg et al., “Positioning
and sensing in 6G: Gaps, challenges, and opportunities,” IEEE Veh. Technol. Mag.,
vol. 18, no. 1, pp. 40–48, Mar. 2023.

[23] S. Bartoletti, H. Wymeersch, T. Mach, O. Brunnegard, D. Giustiniano, P. Hammar-
berg, M. F. Keskin, J. O. Lacruz, S. M. Razavi, J. Ronnblom et al., “Positioning
and sensing for vehicular safety applications in 5G and beyond,” IEEE Commun.
Mag., vol. 59, no. 11, pp. 15–21, Nov. 2021.

[24] A. Bourdoux, A. N. Barreto, B. van Liempd, C. de Lima, D. Dardari, D. Belot,
E.-S. Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeersch et al., “6G white
paper on localization and sensing,” ArXiv, Jun. 2020.



Bibliography

[25] 5GAA, “C-V2X use cases and service level requirements - volume II,” 5GAA
Automotive Association, Technical Report (TR), 2021.

[26] 5GAA, “C-V2X use cases and service level requirements - volume III,” 5GAA
Automotive Association, Technical Report (TR), 2023.

[27] 3GPP, “Release 15 description; summary of Rel-15 work items,” 3rd Generation
Partnership Project (3GPP), Technical Report (TR) 21.915, 2019, version 15.0.0
Release 15.

[28] Study on enhancement of 3GPP Support for 5G V2X Services, TR 22.886 Version
16.2.0, 3rd Generation Partnership Project (3GPP), Sophia Antipolis, France, Dec.
2018.

[29] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications,
trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp.
134–142, May 2020.

[30] D. Dardari, N. Decarli, A. Guerra, and F. Guidi, “LOS/NLOS near-field local-
ization with a large reconfigurable intelligent surface,” IEEE Trans. Wireless
Commun., vol. 21, no. 6, pp. 4282–4294, Jun. 2022.

[31] A. Xhafa, J. A. Del Peral-Rosado, J. A. López-Salcedo, and G. Seco-Granados,
“Evaluation of 5G positioning performance based on UTDoA, AoA and base-
station selective exclusion,” Sens., vol. 22, no. 1, p. 101, Dec. 2021.

[32] Y. Ge, H. Khosravi, F. Jiang, H. Chen, S. Lindberg, P. Hammarberg, H. Kim,
O. Brunnegård, O. Eriksson, B.-E. Olsson et al., “Experimental validation of
single BS 5G mmWave positioning and mapping for intelligent transport,” ArXiv,
Mar. 2023.

[33] X. Lin, “An overview of 5G advanced evolution in 3GPP release 18,” IEEE
Commun. Stand. Mag., vol. 6, no. 3, pp. 77–83, Sep. 2022.

[34] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in ma-
chine learning: an introduction to concepts and methods,” Mach. Learn., vol. 110,
no. 3, pp. 457–506, Mar. 2021.

[35] C. Ruah, O. Simeone, and B. Al-Hashimi, “A Bayesian framework for digital
twin-based control, monitoring, and data collection in wireless systems,” IEEE J.
Sel. Areas Commun., vol. 41, no. 10, pp. 3146–3160, Aug. 2023.

[36] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[37] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless
networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.

[38] A. Conti, M. Guerra, D. Dardari, N. Decarli, and M. Z. Win, “Network exper-
imentation for cooperative localization,” IEEE J. Sel. Areas Commun., vol. 30,
no. 2, pp. 467–475, Feb. 2012.



Bibliography

[39] S. Zhang, E. Staudinger, T. Jost, W. Wang, C. Gentner, A. Dammann, H. Wymeer-
sch, and P. A. Hoeher, “Distributed direct localization suitable for dense networks,”
IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 2, pp. 1209–1227, Apr. 2020.

[40] A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win, “Soft in-
formation for localization-of-things,” Proc. of the IEEE, vol. 107, no. 11, pp.
2240–2264, Nov. 2019.

[41] D. Hall and J. Llinas, “An introduction to multisensor data fusion,” Proc. IEEE,
vol. 85, no. 1, pp. 6–23, Jan. 1997.

[42] J. Williams and R. Lau, “Approximate evaluation of marginal association prob-
abilities with belief propagation,” IEEE Trans. Aerosp. Electron. Syst., vol. 50,
no. 4, pp. 2942–2959, Oct. 2014.

[43] F. Meyer, T. Kropfreiter, J. L. Williams, R. Lau, F. Hlawatsch, P. Braca, and M. Z.
Win, “Message passing algorithms for scalable multitarget tracking,” Proc. IEEE,
vol. 106, no. 2, pp. 221–259, Feb. 2018.

[44] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp.
61–80, Jan. 2008.

[45] V. Garcia Satorras and M. Welling, “Neural enhanced belief propagation on factor
graphs,” in Proceedings of The 24th International Conference on Artificial Intelli-
gence and Statistics, ser. Proceedings of Machine Learning Research, A. Banerjee
and K. Fukumizu, Eds., vol. 130. PMLR, Mar. 2020, pp. 685–693.

[46] M. Liang and F. Meyer, “Neural enhanced belief propagation for cooperative
localization,” in 2021 IEEE Statistical Signal Process. Workshop (SSP), Jul. 2021,
pp. 326–330.

[47] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” AI Open, vol. 1,
pp. 57–81, Apr. 2021.

[48] K. Yoon, R. Liao, Y. Xiong, L. Zhang, E. Fetaya, R. Urtasun, R. Zemel, and
X. Pitkow, “Inference in probabilistic graphical models by graph neural networks,”
in 2019 53rd Asilomar Conf. Signals, Syst., Comput. IEEE, Nov. 2019, pp.
868–875.

[49] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decentralized data,” in
Proc. 20th Int. Conf. Artif. Intell. Statistics, ser. Proceedings of Machine Learning
Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, Apr. 2017, pp. 1273–1282.

[50] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated
learning for edge devices with non-IID data,” in 2020 IEEE Int. Conf. Big Data
(Big Data), Dec. 2020, pp. 15–24.

[51] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” Dec. 2018, arXiv:1812.06127.



Bibliography

[52] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive weighting,”
IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 4, pp. 1078–1088, May 2021.

[53] F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and N. Michelusi,
“Semi-decentralized federated learning with cooperative D2D local model ag-
gregations,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3851–3869, Oct.
2021.

[54] G. Soatti, S. Savazzi, M. Nicoli, M. A. Alvarez, S. Kianoush, V. Rampa, and
U. Spagnolini, “Distributed signal processing for dense 5G IoT platforms: Net-
working, synchronization, interference detection and radio sensing,” Ad Hoc
Netw., vol. 89, pp. 9–21, Feb. 2019.

[55] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Mar.
2007.

[56] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency
federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp.
491–506, Oct. 2019.

[57] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially private
asynchronous federated learning for mobile edge computing in urban informatics,”
IEEE Trans. Ind. Inform., vol. 16, no. 3, pp. 2134–2143, Sep. 2019.

[58] O. Gupta and R. Raskar, “Distributed learning of deep neural network over
multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, Aug. 2018.

[59] K. Palanisamy, V. Khimani, M. H. Moti, and D. Chatzopoulos, “Spliteasy: A
practical approach for training ML models on mobile devices,” in Proc. 22nd Int.
Workshop Mobile Comput. Syst. Appl., Feb. 2021, pp. 37–43.

[60] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed comparison of
communication efficiency of split learning and federated learning,” ArXiv, Sep.
2019.

[61] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in 2020 Int. Conf.
Inf. Netw. (ICOIN), Mar. 2020, pp. 7–9.

[62] C. Thapa, P. C. Mahawaga Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” Proc. AAAI Conf. Artif. Intell., vol. 36,
no. 8, pp. 8485–8493, Jul. 2022.

[63] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi, “Split
learning over wireless networks: Parallel design and resource management,” IEEE
J. Sel. Areas Commun., vol. 41, no. 4, pp. 1051–1066, Apr. 2023.

[64] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. A
Bradford Book, Oct. 2018.

[65] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level



Bibliography

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, Feb. 2015.

[66] D. P. Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive, and
Adaptive Control, 1st ed. Athena Scientific, Aug. 2021.

[67] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in Proc. 4th
Int. Conf. Learn. Representations, Sep. 2016, pp. 1–14.

[68] N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh, and D. Batra,
“Learning dynamics model in reinforcement learning by incorporating the long
term future,” in Proc. 7th Int. Conf. Learn. Representations, Mar. 2019, pp. 1–14.

[69] D. P. Bertsekas, Dynamic Programming and Optimal Control, 4th ed. Athena
Scientific, Oct. 2000.

[70] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs,
ser. SpringerBriefs in Intelligent Systems. Springer International Publishing,
Jun. 2016.

[71] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a rehearsal
for decentralized planning,” Neurocomputing, vol. 190, no. C, pp. 82–94, May
2016.

[72] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized
multi-task multi-agent reinforcement learning under partial observability,” in Proc.
34th Int. Conf. Mach. Learn., Aug. 2017, pp. 2681–2690.

[73] S. Bhattacharya, S. Kailas, S. Badyal, S. Gil, and D. Bertsekas, “Multiagent
reinforcement learning: Rollout and policy iteration for POMDP with application
to multirobot problems,” IEEE Trans. Robot., vol. 40, pp. 2003–2023, Dec. 2024.

[74] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications,” IEEE
Trans. Cybern., vol. 50, no. 9, pp. 3826–3839, Mar. 2020.

[75] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,”
Artif. Intell. Rev., vol. 55, no. 2, pp. 895–943, Apr. 2021.

[76] Z. Xia, J. Du, J. Wang, C. Jiang, Y. Ren, G. Li, and Z. Han, “Multi-agent
reinforcement learning aided intelligent UAV swarm for target tracking,” IEEE
Trans. Veh. Technol., vol. 71, no. 1, pp. 931–945, Nov. 2021.

[77] B. Peng, G. Seco-Granados, E. Steinmetz, M. Frohle, and H. W. Wymeersch,
“Decentralized scheduling for cooperative localization with deep reinforcement
learning,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4295–4305, May 2019.

[78] M. Rangwala and R. Williams, “Learning multi-agent communication through
structured attentive reasoning,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst.,
vol. 33, Dec. 2020, pp. 10 088–10 098.



Bibliography

[79] E. Pesce and G. Montana, “Learning multi-agent coordination through
connectivity-driven communication,” Machine Learning, vol. 112, no. 2, p.
483–514, Dec. 2022.

[80] S. Marano, W. Gifford, H. Wymeersch, and M. Win, “NLOS identification and
mitigation for localization based on UWB experimental data,” IEEE Journal on
Selected Areas in Communications, vol. 28, no. 7, pp. 1026–1035, Sep. 2010.

[81] C. Huang, R. He, B. Ai, A. F. Molisch, B. K. Lau, K. Haneda, B. Liu, C.-X. Wang,
M. Yang, C. Oestges et al., “Artificial intelligence enabled radio propagation for
communications—part II: Scenario identification and channel modeling,” IEEE
Trans. on Antennas and Propag., vol. 70, no. 6, pp. 3955–3969, Jun. 2022.

[82] T. Van Nguyen, Y. Jeong, H. Shin, and M. Z. Win, “Machine learning for wideband
localization,” IEEE J. Sel. Areas Commun., vol. 33, no. 7, pp. 1357–1380, Jul.
2015.

[83] H. Wymeersch, S. Marano, W. M. Gifford, and M. Z. Win, “A machine learning
approach to ranging error mitigation for UWB localization,” IEEE Transactions
on Communications, vol. 60, no. 6, pp. 1719–1728, Jun. 2012.

[84] X. Yang, “NLOS mitigation for UWB localization based on sparse pseudo-input
Gaussian process,” IEEE Sens. J., vol. 18, no. 10, pp. 4311–4316, May 2018.

[85] H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “Confi: Convolutional neural
networks based indoor wi-fi localization using channel state information,” IEEE
Access, vol. 5, pp. 18 066–18 074, Sep. 2017.

[86] Y. Jing, J. Hao, and P. Li, “Learning spatiotemporal features of CSI for indoor
localization with dual-stream 3D convolutional neural networks,” IEEE Access,
vol. 7, pp. 147 571–147 585, Oct. 2019.

[87] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learning,”
Machine Learning, vol. 109, no. 2, pp. 373–440, Nov. 2020.

[88] M. Stahlke, S. Kram, F. Ott, T. Feigl, and C. Mutschler, “Estimating TOA reliabil-
ity with variational autoencoders,” IEEE Sens. J., vol. 22, no. 6, pp. 5133–5140,
Mar. 2022.

[89] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,”
in Proc. of the 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, ser. KDD ’17. Association for Computing Machinery, Aug. 2017, pp.
665–674.

[90] V. L. Cao, M. Nicolau, and J. McDermott, “A hybrid autoencoder and density
estimation model for anomaly detection,” in Parallel Problem Solving from Nature
– PPSN XIV, J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and
B. Paechter, Eds. Springer International Publishing, Aug. 2016, pp. 717–726.

[91] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen,
“Deep autoencoding Gaussian mixture model for unsupervised anomaly detection,”
in Int. Conf. on Learning Representations, Feb. 2018.



Bibliography

[92] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user location
and tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (Cat. No.00CH37064), vol. 2. IEEE,
Mar. 2000, pp. 775–784.

[93] M. Youssef and A. Agrawala, “The horus WLAN location determination sys-
tem,” in Proceedings of the 3rd international conference on Mobile systems,
applications, and services. ACM, Jun. 2005, pp. 205–218.

[94] X. Wang, L. Gao, S. Mao, and S. Pandey, “Deepfi: Deep learning for indoor
fingerprinting using channel state information,” in 2015 IEEE Wireless Communi-
cations and Networking Conference (WCNC), Mar. 2015, pp. 1666–1671, iSSN:
1558-2612.

[95] Y. Chapre, A. Ignjatovic, A. Seneviratne, and S. Jha, “CSI-MIMO: An efficient wi-
fi fingerprinting using channel state information with MIMO,” Pervasive Mobile
Comput., vol. 23, pp. 89–103, Oct. 2015.

[96] X. Wang, L. Gao, and S. Mao, “Phasefi: Phase fingerprinting for indoor local-
ization with a deep learning approach,” in 2015 IEEE Global Commun. Conf.
(GLOBECOM). IEEE, Dec. 2015, pp. 1–6.

[97] S. Savazzi, S. Sigg, M. Nicoli, V. Rampa, S. Kianoush, and U. Spagnolini,
“Device-free radio vision for assisted living: Leveraging wireless channel quality
information for human sensing,” IEEE Signal Processing Magazine, vol. 33, no. 2,
pp. 45–58, Mar. 2016.

[98] X. Wang, X. Wang, and S. Mao, “Resloc: Deep residual sharing learning for
indoor localization with CSI tensors,” in 2017 IEEE 28th Annu. Int. Symp. Pers.,
Indoor, Mobile Radio Commun. (PIMRC). IEEE, Oct. 2017, pp. 1–6.

[99] X. Wang, X. Wang, and S. Mao, “Cifi: Deep convolutional neural networks for
indoor localization with 5 ghz wi-fi,” in 2017 IEEE Int. Conf. Commun. (ICC).
IEEE, May 2017, pp. 1–6.

[100] N. Lv, F. Wen, Y. Chen, and Z. Wang, “A deep learning-based end-to-end algo-
rithm for 5G positioning,” IEEE Sens. Lett., vol. 6, no. 4, pp. 1–4, Apr. 2022.

[101] K. Gao, H. Wang, H. Lv, and W. Liu, “Toward 5G NR high-precision indoor posi-
tioning via channel frequency response: A new paradigm and dataset generation
method,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2233–2247, Jul. 2022.

[102] C. Wu, X. Yi, W. Wang, L. You, Q. Huang, X. Gao, and Q. Liu, “Learning to
localize: A 3D CNN approach to user positioning in massive MIMO-OFDM
systems,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4556–4570, Jul.
2021.

[103] A. Shahmansoori, B. Uguen, G. Destino, G. Seco-Granados, and H. Wymeersch,
“Tracking position and orientation through millimeter wave lens MIMO in 5G
systems,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1222–1226, Aug. 2019.



Bibliography

[104] H. Kim, H. Wymeersch, N. Garcia, G. Seco-Granados, and S. Kim, “5G mmWave
vehicular tracking,” in 2018 52nd Asilomar Conf. Signals, Syst., Comput. IEEE,
Oct. 2018, pp. 541–547.

[105] J. Gante, G. Falcão, and L. Sousa, “Deep learning architectures for accurate
millimeter wave positioning in 5G,” Neural Process. Lett., vol. 51, no. 1, pp.
487–514, Feb. 2020.

[106] Y. Ruan, L. Chen, X. Zhou, G. Guo, and R. Chen, “Hi-loc: Hybrid indoor
localization via enhanced 5G NR CSI,” IEEE Trans. Instrum. Meas., vol. 71, pp.
1–15, Aug. 2022.

[107] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep learning
for computer vision?” in Proc. 31th Int. Conf. Neural Inf. Process. Syst., Dec.
2017, pp. 1–11.

[108] X. Zhang and S. Mahadevan, “Bayesian neural networks for flight trajectory
prediction and safety assessment,” Decision Support Syst., vol. 131, no. C, Apr.
2020.

[109] Y. Pang, X. Zhao, H. Yan, and Y. Liu, “Data-driven trajectory prediction with
weather uncertainties: A Bayesian deep learning approach,” Transp. Res. Part C:
Emerg. Technol., vol. 130, p. 103326, Aug. 2021.

[110] M. A. M. Sadr, J. Gante, B. Champagne, G. Falcao, and L. Sousa, “Uncertainty
estimation via Monte Carlo dropout in CNN-based mmWave MIMO localization,”
IEEE Signal Process. Lett., vol. 29, pp. 269–273, Nov. 2022.

[111] A. Korattikara Balan, V. Rathod, K. Murphy, and M. Welling, “Bayesian dark
knowledge,” in Proc. 28th Int. Conf. Neural Inf. Process. Syst., Jun. 2015, pp.
1–11.

[112] B. Camajori Tedeschini, M. Brambilla, L. Barbieri, and M. Nicoli, “Addressing
data association by message passing over graph neural networks,” in 2022 25th
Int. Conf. Inf. Fusion (FUSION), Jul. 2022, pp. 01–07.

[113] B. Camajori Tedeschini, M. Brambilla, L. Barbieri, G. Balducci, and M. Nicoli,
“Cooperative lidar sensing for pedestrian detection: Data association based on
message passing neural networks,” IEEE Trans. Signal Process., vol. 71, pp.
3028–3042, Aug. 2023.

[114] B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Message passing neural
network versus message passing algorithm for cooperative positioning,” IEEE
Trans. Cogn. Commun. Netw., vol. 9, no. 6, pp. 1666–1676, Aug. 2023.

[115] B. Camajori Tedeschini, S. Savazzi, R. Stoklasa, L. Barbieri, I. Stathopoulos,
M. Nicoli, and L. Serio, “Decentralized federated learning for healthcare networks:
A case study on tumor segmentation,” IEEE Access, vol. 10, pp. 8693–8708, Jan.
2022.

[116] B. Camajori Tedeschini, S. Savazzi, and M. Nicoli, “A traffic model based
approach to parameter server design in federated learning processes,” IEEE
Commun. Lett., vol. 27, no. 7, pp. 1774–1778, May 2023.



Bibliography

[117] B. Camajori Tedeschini, S. Savazzi, and M. Nicoli, “Weighted consensus algo-
rithms in distributed and federated learning,” submitted to IEEE Trans. Netw. Sci.
and Eng., pp. 1–13, 2024.

[118] B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Split consensus federated
learning: an approach for distributed training and inference,” IEEE Access, vol. 12,
pp. 119 535–119 549, Aug. 2024.

[119] B. Camajori Tedeschini, M. Brambilla, M. Nicoli, and M. Z. Win, “Cooperative
positioning with multi-agent reinforcement learning,” in 2024 27th Int. Conf. Inf.
Fusion (FUSION), 2024, pp. 1–7.

[120] B. Camajori Tedeschini, M. Brambilla, M. Nicoli, and M. Z. Win, “Multi-agent
reinforcement learning for distributed cooperative positioning,” IEEE Trans. Intell.
Veh., pp. 1–16, Oct. 2024.

[121] B. Camajori Tedeschini, M. Nicoli, and M. Z. Win, “On the latent space of
mmWave MIMO channels for NLOS identification in 5G-advanced systems,”
IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1655–1669, May 2023.

[122] B. Camajori Tedeschini and M. Nicoli, “Cooperative deep-learning positioning
in mmWave 5G-advanced networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 12,
pp. 3799–3815, Dec. 2023.

[123] B. Camajori Tedeschini, G. Kwon, M. Nicoli, and M. Z. Win, “Empowering
6G positioning and tracking with Bayesian neural networks,” in ICC 2024 - 2024
IEEE Int. Conf. Commun. (ICC). IEEE, Jun. 2024, pp. 1–6.

[124] B. Camajori Tedeschini, G. Kwon, M. Nicoli, and M. Z. Win, “Real-time
Bayesian neural networks for 6G cooperative positioning and tracking,” IEEE J.
Sel. Areas Commun., vol. 42, no. 9, pp. 2322–2338, Aug. 2024.

[125] B. Camajori Tedeschini, M. Brambilla, L. Italiano, S. Reggiani, D. Vaccarono,
M. Alghisi, L. Benvenuto, A. Goia, E. Realini, F. Grec et al., “A feasibility study
of 5G positioning with current cellular network deployment,” Sci. Reports, vol. 13,
no. 1, Sep. 2023.

[126] L. Barbieri, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Implicit
vehicle positioning with cooperative lidar sensing,” in ICASSP 2023 - 2023 IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023, pp. 1–5, iSSN:
2379-190X.

[127] S. Roger, M. Brambilla, B. Camajori Tedeschini, C. Botella-Mascarell, M. Co-
bos, and M. Nicoli, “Deep-learning-based radio map reconstruction for V2X
communications,” IEEE Trans. on Veh. Technol., pp. 1–9, Oct. 2023.

[128] L. Barbieri, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Deep
learning-based cooperative LiDAR sensing for improved vehicle positioning,”
IEEE Trans. Signal Process., vol. 72, pp. 1666–1682, Mar. 2024.

[129] U. Milasheuski, L. Barbieri, B. Camajori Tedeschini, M. Nicoli, and S. Savazzi,
“On the impact of data heterogeneity in federated learning environments with



Bibliography

application to healthcare networks,” in IEEE Conf. Artif. Intell. IEEE, Jun. 2024,
pp. 1017–1023.

[130] L. Italiano, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli, “Pedestrian
positioning in urban environments with 5G technology,” in IEEE Mediterranean
Commun. and Comput. Netw. Conf. IEEE, Jun. 2024, pp. 1–6.

[131] L. Italiano, B. Camajori Tedeschini, M. Brambilla, H. Huang, M. Nicoli, and
H. Wymeersch, “A tutorial on 5G positioning,” IEEE Commun. Surveys & Tuts,
pp. 1–48, Aug. 2024.

[132] M. Brambilla, M. Alghisi, B. Camajori Tedeschini, A. Fumagalli, F. Grec,
L. Italiano, C. Pileggi, L. Biagi, S. Bianchi, A. Gatti et al., “Integration of 5G
and GNSS technologies for enhanced positioning: an experimental study,” IEEE
Open J. of the Commun. Soc., pp. 1–20, Nov. 2024.

[133] N. Schatz, S. Kim, G. Kwon, B. Camajori Tedeschini, M. Ricard, T. Klein,
V. Weerackody, A. Conti, and M. Z. Win, “Location verification in next-generation
non-terrestrial networks,” in IEEE Military Commun. Conf. IEEE, Nov. 2024,
pp. 1–6.

[134] J. C. Morrison, N. Schatz, S. Kim, G. Kwon, B. Camajori Tedeschini, V. Weer-
ackody, A. Conti, and M. Z. Win, “Sidelink-enabled cooperative localization for
xG non-terrestrial networks,” in IEEE Military Commun. Conf. IEEE, Nov. 2024,
pp. 1–6.

[135] F. Meyer and M. Z. Win, “Scalable data association for extended object tracking,”
IEEE Trans. Signal Inf. Process. over Netw., vol. 6, pp. 491–507, May 2020.

[136] R. W. Sittler, “An optimal data association problem in surveillance theory,” IEEE
Trans. Mil. Electron., vol. 8, no. 2, pp. 125–139, Apr. 1964.

[137] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning:
Tutorial, review, and perspectives on open problems,” ArXiv, May 2020.

[138] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun, “Hands-on
Bayesian neural networks—a tutorial for deep learning users,” IEEE Comput.
Intell. Mag., vol. 17, no. 2, pp. 29–48, May 2022.

[139] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin
dynamics,” in Proc. 28th Int. Conf. Mach. Learn., Jun. 2011, p. 681–688.

[140] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: representing
model uncertainty in deep learning,” in Proc. 33th Int. Conf. Mach. Learn., Jun.
2016, p. 1050–1059.

[141] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncer-
tainty in neural networks,” in Proc. 32th Int. Conf. Mach. Learn., Jul. 2015, p.
1613–1622.

[142] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini,
“Computational capabilities of graph neural networks,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 81–102, Jan. 2008.



Bibliography

[143] R. E. Schapire, The Boosting Approach to Machine Learning: An Overview. New
York, NY: Springer New York, 2003, pp. 149–171.

[144] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. A. Riedmiller,
R. Hadsell, and P. W. Battaglia, “Graph networks as learnable physics engines
for inference and control,” in Proc. 35th Int. Conf. Mach. Learn., Jul. 2018, pp.
4470–4479.

[145] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. 34th Int. Conf. Mach. Learn. -
Volume 70. PMLR, Apr. 2017, p. 1263–1272.

[146] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in 2018
IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR), Dec. 2018, pp. 7794–7803.

[147] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. Lillicrap, “A simple neural network module for relational reasoning,” in
Advances Neural Inform. Process. Syst., I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., Dec. 2017, pp. 1–16.

[148] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola,
“Deep sets,” in Advances Neural Inform. Process. Syst., I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., Dec. 2017, p. 3394–3404.

[149] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,” in 2019 IEEE/CVF Conf.
Comput. Vis. Pattern Recog. (CVPR), Jun. 2019, pp. 12 689–12 697.

[150] C. Thapa, M. A. P. Chamikara, and S. A. Camtepe, “Advancements of federated
learning towards privacy preservation: From federated learning to split learning,”
in Federated Learn. Syst., M. H. U. Rehman and M. M. Gaber, Eds. Springer
International Publishing, Jun. 2021, vol. 965, pp. 79–109.

[151] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey, “No peek: A
survey of private distributed deep learning,” arXiv preprint arXiv:1812.03288,
Dec. 2018.

[152] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.
3rd Int. Conf. Learn. Representations, Dec. 2015, pp. 1–15.

[153] S. Oh, J. Park, P. Vepakomma, S. Baek, R. Raskar, M. Bennis, and S.-L. Kim,
“Locfedmix-SL: Localize, federate, and mix for improved scalability, convergence,
and latency in split learning,” in Proc. ACM Web Conf. 2022, Apr. 2022, pp.
3347–3357.

[154] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering
for location estimation,” IEEE Pervasive Comput., vol. 2, no. 3, pp. 24–33, Sep.
2003.



Bibliography

[155] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal
Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[156] M. Brambilla, D. Gaglione, G. Soldi, R. Mendrzik, G. Ferri, K. D. LePage,
M. Nicoli, P. Willett, P. Braca, and M. Z. Win, “Cooperative localization and
multitarget tracking in agent networks with the sum-product algorithm,” IEEE
Open J. Signal Process., vol. 3, pp. 169–195, Mar. 2022.

[157] Study on NR positioning support, TR 38.855 Version 16.0.0, 3rd Generation
Partnership Project (3GPP), Sophia Antipolis, France, 2019, Sep. 2019.

[158] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation,
and Modulation Theory, 1st ed. Wiley, Mar. 2002.

[159] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge
University Press, 2005, oCLC: ocm57751753.

[160] X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based on a
new type of fingerprint for massive MIMO-OFDM systems,” IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6134–6145, Jul. 2018.

[161] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in Comput. Vis. - ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, Eds. Springer International Publishing, 2014, pp. 818–833.

[162] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” ArXiv, Dec.
2013.

[163] E. Parzen, “On estimation of a probability density function and mode,” The Annals
of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, Dec. 2007.

[164] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, Aug. 2006,
vol. 4, no. 4.

[165] B. Silverman, Density Estimation for Statistics and Data Analysis, 1st ed. Rout-
ledge, Mar. 2018.

[166] P. Lv, Y. Yu, Y. Fan, X. Tang, and X. Tong, “Layer-constrained variational
autoencoding kernel density estimation model for anomaly detection,” Knowledge-
Based Systems, vol. 196, p. 105753, Mar. 2020.




	Acknowledgments
	Financial Support
	Abstract
	List of Figures
	List of Algorithms
	List of Acronyms
	Notation
	I Overview
	Introduction
	Motivations
	State of the Art
	Graph-aware Centralized Learning
	Privacy-preserving Decentralized Learning
	Non-stationary Cooperative Learning
	Sensing in Cellular Networks by Cooperative Inference
	Machine Learning for NLoS Identification
	Machine Learning for Static Positioning
	Machine Learning for Mobile Positioning


	Contributions and Objectives
	Outline and Related Publications

	Learning in Agent Networks
	System Model and Problem Formulation
	Discussion and Contributions

	From Non-Stationary to Stationary Data
	Stationary Learning
	Learning Uncertainty Quantification
	Discussion and Contributions

	From Single Node to Graph Learning
	Message Passing Neural Networks
	Discussion and Contributions

	From Centralized to Decentralized Learning
	Federated Learning
	Discussion and Contributions

	Split Learning
	Discussion and Contributions


	From Learning to Bayesian Filtering
	Discussion and Contributions


	Inference in Agent Networks
	System Model
	Location-dependent Fingerprint
	Input and DL Model
	Efficient Distribution Modelling with Variational Inference
	Discussion and Contributions



	II Cooperative Learning
	Graph-aware Learning
	Federated and Split Learning
	Multi-Agent Reinforcement Learning

	III Cooperative Inference
	Efficient Distribution Sampling for NLoS Identification
	Efficient Latent Features Combination for Static Positioning
	Efficient Uncertainty Quantification for Mobile Positioning
	Conclusions and Future Developments
	Bibliography


